Home
Class 12
MATHS
If (x+1)/(x^(3)+x)=A/x +(Bx+C)/(x^(2)+1...

If `(x+1)/(x^(3)+x)=A/x +(Bx+C)/(x^(2)+1)`, then find the principal value of `sin^(-1)(A/B)`.

Text Solution

Verified by Experts

The correct Answer is:
`- pi/2`
Promotional Banner

Similar Questions

Explore conceptually related problems

If x + 1/x = 2 , the principal value of sin^(-1) x is

If (x+1)^(2)/(x^(3)+x)=A/x+(Bx+C)/(x^(2)+1) " then "Sin^(-1)(A/C)=

If (x)/((1+x^(2))(3-2x))=(A)/(3-2x)+(Bx+C)/(1+x^(2)) then C=

If cos^(-1) x = (pi)/(3) , the find the value of sin ^(-1)x .

If cos (2 sin^(-1) x) = (1)/(9) , then find the value of x

If tan^(-1)x = theta , find the value of sin^(-1).(2x)/(1+x^(2))

If (x^(2)+x+2)/(x^(2)+2x+1)=A+(B)/(x+1)+(C)/((x+1)^(2)) , then find the value of A+B+C .

Resolve into Partial Fractions If (1)/(x^(3)(x+3))=(1)/(Ax) - (1)/(Bx^(2))+(1)/(Cx^(3))-(1)/(D(x+3)) then find the values of A, B, C and D.

If (2x^(3)+1)/((x-1)(x+1)(x+2))=A+(B)/(x-1)+(C)/(x+1)+(D)/(x+2) , then find the value of A+B+C+D .

If x in [-1,0], then find the value of cos^(-1)(2x^2-1)-2sin^(-1)x