Home
Class 12
MATHS
If (x^(4))/((x-1)(x+2))=(1)/(3(x-1))-(16...

If `(x^(4))/((x-1)(x+2))=(1)/(3(x-1))-(16)/(3(x+2))+x^(2)-x+k` then `k=`

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{x^4}{(x-1)(x+2)} = \frac{1}{3(x-1)} - \frac{16}{3(x+2)} + x^2 - x + k \] we need to find the value of \( k \). ### Step 1: Multiply both sides by the common denominator Multiply both sides by \((x-1)(x+2)\) to eliminate the denominators: \[ x^4 = \frac{1}{3}(x+2) - \frac{16}{3}(x-1) + (x^2 - x + k)(x-1)(x+2) \] ### Step 2: Simplify the right-hand side Distributing the terms on the right-hand side: 1. For \(\frac{1}{3}(x+2)\): \[ \frac{1}{3}(x+2) = \frac{x}{3} + \frac{2}{3} \] 2. For \(-\frac{16}{3}(x-1)\): \[ -\frac{16}{3}(x-1) = -\frac{16x}{3} + \frac{16}{3} \] Combining these gives: \[ \frac{x}{3} - \frac{16x}{3} + \frac{2}{3} + \frac{16}{3} = -\frac{15x}{3} + \frac{18}{3} = -5x + 6 \] Now we have: \[ x^4 = -5x + 6 + (x^2 - x + k)(x-1)(x+2) \] ### Step 3: Expand \((x^2 - x + k)(x-1)(x+2)\) First, expand \((x-1)(x+2)\): \[ (x-1)(x+2) = x^2 + x - 2 \] Now distribute \((x^2 - x + k)\): \[ (x^2 - x + k)(x^2 + x - 2) = x^4 + x^3 - 2x^2 - x^3 - x^2 + 2x + kx^2 + kx - 2k \] Combining like terms: \[ = x^4 + (0)x^3 + (-2 - 1 + k)x^2 + (2 + k)x - 2k \] \[ = x^4 + (k - 3)x^2 + (k + 2)x - 2k \] ### Step 4: Set the equation equal Now we equate both sides: \[ x^4 = -5x + 6 + x^4 + (k - 3)x^2 + (k + 2)x - 2k \] ### Step 5: Cancel \(x^4\) and simplify Cancelling \(x^4\) from both sides: \[ 0 = -5x + 6 + (k - 3)x^2 + (k + 2)x - 2k \] ### Step 6: Combine like terms Combine the terms: \[ 0 = (k - 3)x^2 + (-5 + k + 2)x + (6 - 2k) \] ### Step 7: Set coefficients equal to zero Since this must hold for all \(x\), we set the coefficients of \(x^2\), \(x\), and the constant term to zero: 1. Coefficient of \(x^2\): \[ k - 3 = 0 \implies k = 3 \] 2. Coefficient of \(x\): \[ -5 + k + 2 = 0 \implies k - 3 = 0 \implies k = 3 \] 3. Constant term: \[ 6 - 2k = 0 \implies 2k = 6 \implies k = 3 \] ### Conclusion In all cases, we find that \( k = 3 \). Thus, the value of \( k \) is \[ \boxed{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If the third derivative of (x^(4))/((x-1)(x-2)) is (-12k)/((x-2)^(4))+(6)/((x-1)^(4)) , then the value of k is

Evaluate, lim_(x to 1) (x^(4)-1)/(x-1)=lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2)) , then find the value of k.

If Lim_(x to 1) (x^(4)-1)/(x-1)=Lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2)) , find the value of k .

((x+1))/((2x-1)(3x+1))=A/((2x-1))+B/((3x+1)) rArr 16A+9B=

If (x-4)/(x^(2)-5x-2k)=(2)/(x-2) - (1)/(x+k) , then find k ?

If int((x^(2)-1)dx)/((x^(4)+3x^(2)+1)Tan^(-1)((x^(2)+1)/(x)))=klog|tan^(-1)""(x^(2)+1)/x|+c , then k is equal to

If lim_(xto-oo)((3x^(4)+2x^(2)).sin(1/x)+|x|^(3)+5)/(|x|^(3)+|x^(2)|+|x|+1)=k then |k/2| is …….

f(x)=x^(4)-25x^(2) k(x)=(1)/(x^(3)+3x^(2)-10x) Which of the following expressions is equivalent to f(x) . k(x),for xgt2 ?

Find the value of k, if (3x-4)/((x-3)(x+k))=(1)/(x-3)+(2)/(x+k)

int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k _(1)) ( sqrt(1-9x ^(2))+ (cos ^(-1) 3x )^(k_(2)))+c, then k _(1) ^(2)+k_(2)^(2)= (where C is an arbitrary constnat. )