Home
Class 12
MATHS
If (ax-1)/((1-x+x^(2))(2+x))=(x)/(1-x+x^...

If `(ax-1)/((1-x+x^(2))(2+x))=(x)/(1-x+x^(2))-(1)/(2+x)` then `a=`

A

3

B

-3

C

2

D

-2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{ax-1}{(1-x+x^2)(2+x)} = \frac{x}{1-x+x^2} - \frac{1}{2+x} \] we will follow these steps: ### Step 1: Multiply both sides by the common denominator Multiply both sides of the equation by \((1-x+x^2)(2+x)\) to eliminate the denominators. \[ (ax - 1) = \left( \frac{x}{1-x+x^2} \right)(1-x+x^2)(2+x) - \left( \frac{1}{2+x} \right)(1-x+x^2)(2+x) \] ### Step 2: Simplify the right-hand side The right-hand side simplifies as follows: 1. The first term becomes: \[ x(2+x) = 2x + x^2 \] 2. The second term simplifies to: \[ 1 - x + x^2 \] So, we can rewrite the equation as: \[ ax - 1 = (2x + x^2) - (1 - x + x^2) \] ### Step 3: Combine like terms Now, simplify the right-hand side: \[ ax - 1 = 2x + x^2 - 1 + x - x^2 \] The \(x^2\) terms cancel out: \[ ax - 1 = 3x - 1 \] ### Step 4: Compare coefficients Now, we can compare coefficients on both sides of the equation: \[ ax = 3x \] This implies: \[ a = 3 \] ### Conclusion Thus, the value of \(a\) is \[ \boxed{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 1/(x^(4)+x^(2)+1)=(Ax+B)/(x^(2)+x+1)+(Cx+D)/(x^(2)-x+1) " then "C+D=

If (x^(4))/((x-1)(x-2))=x^(2)+3x+7+(A)/(x-2)+(B)/(x-1) then A=

If ((x+1)^(2))/(x(x^(2)+1))=(A)/(x)+(Bx+C)/(x^(2)+1) then cos^(-1)(A/C)=

If x in (0, 1) , then find the value of tan^(-1) ((1 -x^(2))/(2x)) + cos^(-1) ((1 -x^(2))/(1 + x^(2)))

If (x^(2)+x+1)/(x^(2)+2x+1)=A+B/(x+1)+C/(x+1)^(2) then A - B =

a : If 1/((x-2)(x^(2)+1))=A/(x-2)+(Bx+C)/(x^(2)+1) " then "A=1/5, B=-1/5, C=-2/5 . R : 1/((x-a)(x^(2)+b))=1/(a^(2)+b)[1/(x-a)-(x+a)/(x^(2)+b)]

The expression (1)/(1+(x)/(1-(x)/(x+2)))div ((1)/(1-x)+(1)/(1+x))/((1)/(1-x)-(1)/(1+x)) (a) (2x)/(x^(2)+2x+2) (b) (2x)/(x^(2)-1) (c) 1 (d) x^(2)-1

If tan^(- 1)((2x)/(x^2-1))+cos^(- 1){(x^2-1)/(x^2+1)}=(2pi)/3 then x=

If sin^(-1)((2x)/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2)))=4 tan^(-1) x then

lim_(xrarr1) [(x-2)/(x^(2)-x)-(1)/(x^(3)-3x^(2)+2x)]