Home
Class 12
MATHS
Observe the following Lists ul("List -...

Observe the following Lists
`ul("List - I")`
A) If `(3x)/((x-a)(x-b))=(2)/(x-a)+(1)/(x-b)` then `a:b` is
B) If `(x+4)/((x^(2)-4)(x+1))=(A)/(x-2)+(B)/(x+2)+(C)/(x+1)`
then `A+B+C` is
C) If `(2x+1)/((x-1)(x^(2)+1))=(A)/(x-1)+(Bx+C)/(x^(2)+1)` then `C=`
`ul("List - II")`
1) Slope of `x` -axis
2) `sin. (3 pi)/(2)`
3) `{:(" "Lt),(x rarr 0):} (Tan x-Sinx)/(x^(3))`
4) Slope of the line `6x+3y-7=0`
The correct match is

A

a. 413

B

b. 134

C

c, 431

D

d, 143

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the question step by step. ### Step 1: Solve for A We start with the equation given in option A: \[ \frac{3x}{(x-a)(x-b)} = \frac{2}{x-a} + \frac{1}{x-b} \] To combine the right-hand side, we take the LCM: \[ \frac{2(x-b) + 1(x-a)}{(x-a)(x-b)} = \frac{2x - 2b + x - a}{(x-a)(x-b)} = \frac{3x - (2b + a)}{(x-a)(x-b)} \] Setting the numerators equal gives: \[ 3x = 3x - (2b + a) \] This simplifies to: \[ 0 = - (2b + a) \implies 2b + a = 0 \implies a = -2b \] Thus, the ratio \( \frac{a}{b} = \frac{-2b}{b} = -2:1 \). ### Step 2: Solve for B Next, we consider option B: \[ \frac{x+4}{(x^2-4)(x+1)} = \frac{A}{x-2} + \frac{B}{x+2} + \frac{C}{x+1} \] The LCM of the right-hand side is \((x-2)(x+2)(x+1)\). We rewrite the equation: \[ x + 4 = A(x+2)(x+1) + B(x-2)(x+1) + C(x-2)(x+2) \] To find \(A\), \(B\), and \(C\), we substitute convenient values for \(x\). 1. Let \(x = 2\): \[ 2 + 4 = A(4)(3) \implies 6 = 12A \implies A = \frac{1}{2} \] 2. Let \(x = -2\): \[ -2 + 4 = B(-4)(-1) \implies 2 = 4B \implies B = \frac{1}{2} \] 3. Let \(x = -1\): \[ -1 + 4 = C(-3)(1) \implies 3 = -3C \implies C = -1 \] Now, we find \(A + B + C\): \[ A + B + C = \frac{1}{2} + \frac{1}{2} - 1 = 0 \] ### Step 3: Solve for C Now we solve option C: \[ \frac{2x+1}{(x-1)(x^2+1)} = \frac{A}{x-1} + \frac{Bx+C}{x^2+1} \] The LCM is \((x-1)(x^2+1)\): \[ 2x + 1 = A(x^2 + 1) + (Bx + C)(x - 1) \] Expanding the right-hand side: \[ 2x + 1 = Ax^2 + A + Bx^2 - Bx + Cx - C \] Combining like terms: \[ 2x + 1 = (A + B)x^2 + (C - B)x + A - C \] Setting coefficients equal gives: 1. \(A + B = 0\) 2. \(C - B = 2\) 3. \(A - C = 1\) From \(A + B = 0\), we have \(B = -A\). Substituting into the second equation: \[ C + A = 2 \implies C = 2 - A \] Substituting into the third equation: \[ A - (2 - A) = 1 \implies 2A - 2 = 1 \implies 2A = 3 \implies A = \frac{3}{2} \] Thus, \(B = -\frac{3}{2}\) and \(C = 2 - \frac{3}{2} = \frac{1}{2}\). ### Final Answers - For A: \(a:b = -2:1\) (matches with 4) - For B: \(A + B + C = 0\) (matches with 1) - For C: \(C = \frac{1}{2}\) (matches with 3)
Promotional Banner

Similar Questions

Explore conceptually related problems

If (3x+2)/((x+1)(2x^(2)+3))=(A)/(x+1)-(Bx+C)/(2x^(2)+3) , then A+B-C=

If (x)/((1+x^(2))(3-2x))=(A)/(3-2x)+(Bx+C)/(1+x^(2)) then C=

If (2x^(2)+5)/((x+1)^(2)(x-3))=(A)/(x+1)+(B)/((x+1)^(2))+(C)/(x-3) then A=

If (x^(4))/((x-1)(x-2))=x^(2)+3x+7+(A)/(x-2)+(B)/(x-1) then A=

If (1-x+6x^(2))/(x-x^(3))=A/x +(B)/(1-x)+(C)/(1+x) , then A=

If (x^(2)-5x+7)/(x-1)^(3)=A/(x-1)+B/(x-1)^(2)+C/(x-1)^(3) " then " A+B-C=

a : If 1/((x-2)(x^(2)+1))=A/(x-2)+(Bx+C)/(x^(2)+1) " then "A=1/5, B=-1/5, C=-2/5 . R : 1/((x-a)(x^(2)+b))=1/(a^(2)+b)[1/(x-a)-(x+a)/(x^(2)+b)]

If (1)/((x-a)(x^(2)+b))=(A)/(x-a)+(Bx+C)/(x^(2)+b) then (1)/((x-a)(x^(2)+b)^(2))=

If (x^(2)+x+1)/(x^(2)+2x+1)=A+B/(x+1)+C/(x+1)^(2) then A - B =

If (x+1)^(2)/(x^(3)+x)=A/x+(Bx+C)/(x^(2)+1) " then "Sin^(-1)(A/C)=