Home
Class 12
MATHS
Let a, b, c such that (1)/((1-x)(1-2x)(1...

Let a, b, c such that `(1)/((1-x)(1-2x)(1-3x))=(a)/(1-x)+(b)/(1-2x)+(c)/(1-3x), a/1+b/3+c/5=`

A

`1/15`

B

`1/6`

C

`1/5`

D

`1/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{1}{(1-x)(1-2x)(1-3x)} = \frac{a}{1-x} + \frac{b}{1-2x} + \frac{c}{1-3x}\), we will follow these steps: ### Step 1: Set up the equation We start with the equation: \[ \frac{1}{(1-x)(1-2x)(1-3x)} = \frac{a}{1-x} + \frac{b}{1-2x} + \frac{c}{1-3x} \] ### Step 2: Clear the denominators Multiply both sides by \((1-x)(1-2x)(1-3x)\) to eliminate the denominators: \[ 1 = a(1-2x)(1-3x) + b(1-x)(1-3x) + c(1-x)(1-2x) \] ### Step 3: Expand the right-hand side Now, we will expand the right-hand side: 1. \(a(1-2x)(1-3x) = a(1 - 5x + 6x^2)\) 2. \(b(1-x)(1-3x) = b(1 - 4x + 3x^2)\) 3. \(c(1-x)(1-2x) = c(1 - 3x + 2x^2)\) Combining these, we have: \[ 1 = a(1 - 5x + 6x^2) + b(1 - 4x + 3x^2) + c(1 - 3x + 2x^2) \] ### Step 4: Collect like terms Now we collect the coefficients of \(1\), \(x\), and \(x^2\): \[ 1 = (a + b + c) + (-5a - 4b - 3c)x + (6a + 3b + 2c)x^2 \] ### Step 5: Set up the system of equations From the equation above, we can equate coefficients: 1. Constant term: \(a + b + c = 1\) (Equation 1) 2. Coefficient of \(x\): \(-5a - 4b - 3c = 0\) (Equation 2) 3. Coefficient of \(x^2\): \(6a + 3b + 2c = 0\) (Equation 3) ### Step 6: Solve the system of equations From Equation 1, we can express \(c\) in terms of \(a\) and \(b\): \[ c = 1 - a - b \] Substituting \(c\) into Equations 2 and 3: 1. \(-5a - 4b - 3(1 - a - b) = 0\) \[ -5a - 4b - 3 + 3a + 3b = 0 \implies -2a - b - 3 = 0 \implies b = -2a - 3 \quad (Equation 4) \] 2. \(6a + 3b + 2(1 - a - b) = 0\) \[ 6a + 3b + 2 - 2a - 2b = 0 \implies 4a + b + 2 = 0 \implies b = -4a - 2 \quad (Equation 5) \] ### Step 7: Equate and solve for \(a\) From Equations 4 and 5: \[ -2a - 3 = -4a - 2 \] Solving this gives: \[ 2a = 1 \implies a = \frac{1}{2} \] ### Step 8: Find \(b\) and \(c\) Using \(a = \frac{1}{2}\) in Equation 4: \[ b = -2\left(\frac{1}{2}\right) - 3 = -1 - 3 = -4 \] Using \(a\) and \(b\) in Equation 1: \[ c = 1 - \frac{1}{2} + 4 = 1 - \frac{1}{2} + 4 = \frac{1}{2} + 4 = \frac{9}{2} \] ### Step 9: Calculate \( \frac{a}{1} + \frac{b}{3} + \frac{c}{5} \) Now we compute: \[ \frac{a}{1} + \frac{b}{3} + \frac{c}{5} = \frac{1/2}{1} + \frac{-4}{3} + \frac{9/2}{5} \] Calculating each term: - \( \frac{1}{2} = 0.5 \) - \( \frac{-4}{3} \approx -1.3333 \) - \( \frac{9/2}{5} = \frac{9}{10} = 0.9 \) Adding these: \[ 0.5 - 1.3333 + 0.9 = 0.5 + 0.9 - 1.3333 = 1.4 - 1.3333 = 0.0667 \approx \frac{1}{15} \] Thus, the final answer is: \[ \frac{a}{1} + \frac{b}{3} + \frac{c}{5} = \frac{1}{15} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (1-x+6x^(2))/(x-x^(3))=A/x +(B)/(1-x)+(C)/(1+x) , then A=

If (1)/((1-2x)^(2)(1-3x))=(A)/(1-2x)+(B)/((1-2x)^(2))+(C)/(1-3x) then match the following {:(" List - I"," List - II"),("I) A","(a) 9"),("II) B","(b) -6"),("III) C","(c) -2"):}

If (1)/((1+2x)(1-x^(2)))=(A)/(1+2x)+(B)/(1+x)+(C)/(1-x) then assending order of A, B, C.

If (2x^(2)+5)/((x+1)^(2)(x-3))=(A)/(x+1)+(B)/((x+1)^(2))+(C)/(x-3) then A=

If (x^(3))/((x-a)(x-b)(x-c))=1 +(A)/(x-a)+(B)/(x-b)+(C)/(x-c) then A=

If (3x+2)/((x+1)(2x^(2)+3))=(A)/(x+1)-(Bx+C)/(2x^(2)+3) , then A+B-C=

x^(3)/((2x-1)(x+2)(x-3))=A+B/(2x-1)+C/(x+2)+D/(x-3) rArr A =

((x+1))/((2x-1)(3x+1))=A/((2x-1))+B/((3x+1)) rArr 16A+9B=

Show that: 1/(1+x^(b-a)+x^(c-a))+1/(1+x^(a-b)+\ x^(c-b))+1/(1+x^(b-c)+\ x^(a-c))=1

Assuming that x is a positive real number and a ,\ b ,\ c are rational numbers, show that: ((x^a)/(x^b))^(1/(a b))\ ((x^b)/(x^c))^(1/(b c))\ \ ((x^c)/(x^a))^(1/(a c))=1