Home
Class 12
MATHS
If (x^(4))/((x-a)(x-b)(x-c))= P(x)+(A)/(...

If `(x^(4))/((x-a)(x-b)(x-c))= P(x)+(A)/(x-a)+(B)/(x-b)+(C)/(x-c)` then `P(x)=`

A

`x-a`

B

`x-a-b`

C

`x-a-b-c`

D

`x+a+b+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{x^4}{(x-a)(x-b)(x-c)} = P(x) + \frac{A}{x-a} + \frac{B}{x-b} + \frac{C}{x-c} \] we need to find \( P(x) \). ### Step 1: Identify the form of \( P(x) \) Since the degree of the numerator \( x^4 \) is higher than the degree of the denominator \( (x-a)(x-b)(x-c) \) which is a cubic polynomial, we can express \( P(x) \) as a linear polynomial: \[ P(x) = mx + n \] ### Step 2: Rewrite the equation Substituting \( P(x) \) into the original equation gives: \[ \frac{x^4}{(x-a)(x-b)(x-c)} = mx + n + \frac{A}{x-a} + \frac{B}{x-b} + \frac{C}{x-c} \] ### Step 3: Combine the right-hand side To combine the right-hand side, we need a common denominator: \[ mx + n + \frac{A}{x-a} + \frac{B}{x-b} + \frac{C}{x-c} = \frac{(mx+n)(x-a)(x-b)(x-c) + A(x-b)(x-c) + B(x-a)(x-c) + C(x-a)(x-b)}{(x-a)(x-b)(x-c)} \] ### Step 4: Set the numerators equal Now, we have: \[ x^4 = (mx+n)(x-a)(x-b)(x-c) + A(x-b)(x-c) + B(x-a)(x-c) + C(x-a)(x-b) \] ### Step 5: Expand the right-hand side We need to expand the right-hand side and compare coefficients. The left-hand side is \( x^4 \), and we will expand the right-hand side to find coefficients of \( x^4, x^3, x^2, x, \) and the constant term. ### Step 6: Coefficient comparison 1. The coefficient of \( x^4 \) on the left is \( 1 \). 2. The coefficient of \( x^4 \) on the right is \( m \) (from \( (mx+n)(x-a)(x-b)(x-c) \)). 3. Therefore, we have: \[ m = 1 \] ### Step 7: Find \( n \) Next, we compare the coefficients of \( x^3 \): 1. The coefficient of \( x^3 \) on the left is \( 0 \). 2. The coefficient of \( x^3 \) on the right is \( -a - b - c + n \). 3. Setting these equal gives: \[ -a - b - c + n = 0 \implies n = a + b + c \] ### Step 8: Write the final expression for \( P(x) \) Now we can substitute back the values of \( m \) and \( n \) into \( P(x) \): \[ P(x) = mx + n = 1 \cdot x + (a + b + c) = x + (a + b + c) \] ### Final Answer Thus, we have: \[ P(x) = x + a + b + c \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If (x^(3))/((x-a)(x-b)(x-c))=1 +(A)/(x-a)+(B)/(x-b)+(C)/(x-c) then A=

Prove that (ax^(2))/((x -a)(x-b)(x-c))+(bx)/((x -b)(x-c))+(c)/(x-c)+1 = (x^(3))/((x-a)(x-b)(x-c)) .

If y=(ax^2)/((x-a)(x-b)(x-c))+(b x)/((x-b)(x-c))+c/(x-c)+1 , then prove that (y')/y=1/x[a/(a-x)+b/(b-x)+c/(c-x)]

If y=(ax^2)/((x-a)(x-b)(x-c))+(b x)/((x-b)(x-c))+c/(x-c)+1 , then prove that (y')/y=1/x[a/(a-x)+b/(b-x)+c/(c-x)]

The equation (a(x-b)(x-c))/((a-b)(a-c)) + (b(x-c)(x-a))/((b-c)(b-a))+ (c (x-a) (x-b))/((c-a)(c-b))= x is satisfied by

Show that ((x+b)(x+c))/((b-a)(c-a))+((x+c)(x+a))/((c-b)(a-b))+((x+a)(x+b))/((a-c)(b-c))=1 is an identity.

Simplify: (i)\ ((x^(a+b))/(x^c))^(a-b)\ ((x^(b+c))/(x^a))^(b-c)\ ((x^(c+a))/(x^b))^(c-a) (ii)\ ((x^l)/(x^m))^(1/(lm))\ xx\ ((x^m)/(x^n))^(1/(mn))\ xx\ \ ((x^n)/(x^l))^(1/(ln))

If f(x)=((x^2)/(x^b))^(a+b)*((x^b)/(x^c))^(b+c)*((x^c)/(x^a))^(c+a) , then f^(prime)(x) is equal to: (a) 1 (b) 0 (c) x^(a+b+c) (d) None of these

Statement-1: If a, b, c are distinct real numbers, then a((x-b)(x-c))/((a-b)(a-c))+b((x-c)(x-a))/((b-c)(b-a))+c((x-a)(x-b))/((c-a)(c-b))=x for each real x. Statement-2: If a, b, c in R such that ax^(2) + bx + c = 0 for three distinct real values of x, then a = b = c = 0 i.e. ax^(2) + bx + c = 0 for all x in R .

If 3x=a+b+c , then the value of (x-a)^3+\ (x-b)^3+\ (x-c)^3-3\ (x-a)(x-b)(x-c) is (a) a+b+c (b) (a-b)(b-c)(c-a) (c) 0 (d) None of these