Home
Class 12
MATHS
x^(3)/((2x-1)(x+2)(x-3))=A+B/(2x-1)+C/(x...

`x^(3)/((2x-1)(x+2)(x-3))=A+B/(2x-1)+C/(x+2)+D/(x-3) rArr A =`

A

`1/2`

B

`- 1/50`

C

`- 8/25`

D

`- 27/25`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{x^3}{(2x-1)(x+2)(x-3)} = A + \frac{B}{2x-1} + \frac{C}{x+2} + \frac{D}{x-3} \] we need to find the value of \( A \). ### Step 1: Set Up the Equation We start by expressing the left-hand side in terms of the right-hand side. We can write: \[ x^3 = A(2x-1)(x+2)(x-3) + B(x+2)(x-3) + C(2x-1)(x-3) + D(2x-1)(x+2) \] ### Step 2: Expand the Right-Hand Side Next, we will expand the right-hand side. This involves multiplying out the terms: 1. **Expand \( A(2x-1)(x+2)(x-3) \)**: - First, expand \( (x+2)(x-3) = x^2 - x - 6 \). - Then, expand \( (2x-1)(x^2 - x - 6) = 2x^3 - 2x^2 - 12x - x^2 + x + 6 = 2x^3 - 3x^2 - 11x + 6 \). - Finally, multiply by \( A \): \( A(2x^3 - 3x^2 - 11x + 6) \). 2. **Expand \( B(x+2)(x-3) \)**: - \( B(x^2 - x - 6) \). 3. **Expand \( C(2x-1)(x-3) \)**: - \( C(2x^2 - 6x - x + 3) = C(2x^2 - 7x + 3) \). 4. **Expand \( D(2x-1)(x+2) \)**: - \( D(2x^2 + 4x - x - 2) = D(2x^2 + 3x - 2) \). ### Step 3: Combine All Terms Now we combine all the expanded terms: \[ x^3 = A(2x^3 - 3x^2 - 11x + 6) + B(x^2 - x - 6) + C(2x^2 - 7x + 3) + D(2x^2 + 3x - 2) \] ### Step 4: Collect Like Terms Group the coefficients of \( x^3 \), \( x^2 \), \( x \), and the constant term: - Coefficient of \( x^3 \): \( 2A \) - Coefficient of \( x^2 \): \( -3A + B + 2C + 2D \) - Coefficient of \( x \): \( -11A - B - 7C + 3D \) - Constant term: \( 6A - 6B + 3C - 2D \) ### Step 5: Set Up the System of Equations From the equation \( x^3 = 0x^2 + 0x + 0 \), we can set up the following equations: 1. \( 2A = 1 \) (from the coefficient of \( x^3 \)) 2. \( -3A + B + 2C + 2D = 0 \) (from the coefficient of \( x^2 \)) 3. \( -11A - B - 7C + 3D = 0 \) (from the coefficient of \( x \)) 4. \( 6A - 6B + 3C - 2D = 0 \) (from the constant term) ### Step 6: Solve for \( A \) From the first equation, we can solve for \( A \): \[ A = \frac{1}{2} \] ### Step 7: Conclusion Thus, the value of \( A \) is \[ \boxed{\frac{1}{2}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (2x^(3)+1)/((x-1)(x+1)(x+2))=A+(B)/(x-1)+(C)/(x+1)+(D)/(x+2) , then find the value of A+B+C+D .

If (x^(4))/((x-1)(x-2)(x-3))= A.x+B. (1)/((x-1))+C (1)/((x-2))+D. (1)/((x-3))+E , then A+B+C+D+E=

((x+1))/((2x-1)(3x+1))=A/((2x-1))+B/((3x+1)) rArr 16A+9B=

If (2x^(2)+5)/((x+1)^(2)(x-3))=(A)/(x+1)+(B)/((x+1)^(2))+(C)/(x-3) then A=

(3x^(2)+x+1)/(x-1)^(4)=a/(x-1)+b/(x-1)^(2)+c/(x-1)^(3)+d/(x-1)^(4) rArr [{:(a,b), (c, d):}]=

If (3x+2)/((x+1)(2x^(2)+3))=(A)/(x+1)-(Bx+C)/(2x^(2)+3) , then A+B-C=

If (x^(2)-5x+7)/(x-1)^(3)=A/(x-1)+B/(x-1)^(2)+C/(x-1)^(3) " then " A+B-C=

Assertion (A) : If (1)/(x^(3)(x+2))=A/x + B/x^(2) +C/x^(3) + D/(x+2) then A = 1/8, B= -1/4, C = 1/2, D= -1/8 Reason (R) : (1)/(x^(3)(x+a))=(1)/(a^(3)x)-(1)/(a^(2)x^(2))+(1)/(ax^(3))-(1)/(a^(3)(x+a))

intdx/((x-1)^(3/4)(x+2)^(5/4))= (A) 4/3((x-1)/(x+2))^(1/4)+c (B) 4/3sqrt((x-1)/(x+2))+c (C) 4/3((x+2)/(x-1))^(1/4)+c (D) none of these

Observe the following Lists ul("List - I") A) If (3x)/((x-a)(x-b))=(2)/(x-a)+(1)/(x-b) then a:b is B) If (x+4)/((x^(2)-4)(x+1))=(A)/(x-2)+(B)/(x+2)+(C)/(x+1) then A+B+C is C) If (2x+1)/((x-1)(x^(2)+1))=(A)/(x-1)+(Bx+C)/(x^(2)+1) then C= ul("List - II") 1) Slope of x -axis 2) sin. (3 pi)/(2) 3) {:(" "Lt),(x rarr 0):} (Tan x-Sinx)/(x^(3)) 4) Slope of the line 6x+3y-7=0 The correct match is