Home
Class 12
MATHS
If (x^(4)+24x^(2)+28)/((x^(2)+1)^(3))=A/...

If `(x^(4)+24x^(2)+28)/((x^(2)+1)^(3))=A/((x^(2)+1))+B/((x^(2)+1)^(2))+C/((x^(2)+1)^(3))`, then A + C =

A

6

B

27

C

28

D

29

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given equation: \[ \frac{x^4 + 24x^2 + 28}{(x^2 + 1)^3} = \frac{A}{(x^2 + 1)} + \frac{B}{(x^2 + 1)^2} + \frac{C}{(x^2 + 1)^3} \] ### Step 1: Clear the Denominator Multiply both sides by \((x^2 + 1)^3\): \[ x^4 + 24x^2 + 28 = A(x^2 + 1)^2 + B(x^2 + 1) + C \] ### Step 2: Expand the Right Side Now, we expand the right-hand side: 1. Expand \(A(x^2 + 1)^2\): \[ A(x^2 + 1)^2 = A(x^4 + 2x^2 + 1) = Ax^4 + 2Ax^2 + A \] 2. Expand \(B(x^2 + 1)\): \[ B(x^2 + 1) = Bx^2 + B \] 3. Combine these expansions: \[ Ax^4 + (2A + B)x^2 + (A + B + C) \] ### Step 3: Set Up the Equation Now we equate the coefficients from both sides: \[ x^4 + 24x^2 + 28 = Ax^4 + (2A + B)x^2 + (A + B + C) \] ### Step 4: Compare Coefficients From the equation, we can compare coefficients of \(x^4\), \(x^2\), and the constant term: 1. Coefficient of \(x^4\): \[ A = 1 \] 2. Coefficient of \(x^2\): \[ 2A + B = 24 \] 3. Constant term: \[ A + B + C = 28 \] ### Step 5: Solve for A, B, and C Now we substitute \(A = 1\) into the equations: 1. From \(A = 1\): \[ 2(1) + B = 24 \implies 2 + B = 24 \implies B = 22 \] 2. Substitute \(A\) and \(B\) into the constant term equation: \[ 1 + 22 + C = 28 \implies 23 + C = 28 \implies C = 5 \] ### Step 6: Find A + C Now we can find \(A + C\): \[ A + C = 1 + 5 = 6 \] ### Final Answer Thus, the value of \(A + C\) is: \[ \boxed{6} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(2x^(4)+3x^(2)+1)/((x^(2)+1)^(4))=(A)/((x^(2)+1))+(B)/((x^(2)+1^(2)))+(C)/((x^(2)+1)^(3))+(D)/((x^(2)+1)^(4)) then Match the following. {:(" List - I"," List - II"),("1) A","(a) 2"),("2) B","(b) 1"),("3) C","(c) -1"),("4) D","(d) 0"), (,"(e) 1/2"):}

If (x^(2)-5x+7)/(x-1)^(3)=A/(x-1)+B/(x-1)^(2)+C/(x-1)^(3) " then " A+B-C=

If (x^(2)+x+1)/(x^(2)+2x+1)=A+B/(x+1)+C/(x+1)^(2) then A - B =

(3x^(2)+x+1)/((x-1)^(4))=(A)/(x-1)+(B)/((x-1)^(2))+(C)/((x-1)^(3))+(D)/((x-1)^(4)) then A+B-C+D=

If (2x^(2)+5)/((x+1)^(2)(x-3))=(A)/(x+1)+(B)/((x+1)^(2))+(C)/(x-3) then A=

If (x^(4))/((x-1)(x-2)(x-3))= A.x+B. (1)/((x-1))+C (1)/((x-2))+D. (1)/((x-3))+E , then A+B+C+D+E=

If (3x+2)/((x+1)(2x^(2)+3))=(A)/(x+1)-(Bx+C)/(2x^(2)+3) , then A+B-C=

If : int(2x^(2)+3)/((x^(2)-1)(x^(2)-4))dx=log[((x-2)/(x+))^(a).((x+1)/(x-1))^(b)]+c then : (a, b)-=

If int((2x+1)dx)/(x^(4)+2x^(3)+x^(2)-1)=Aln|(x^(2)+x+1)/(x^(2)+x-1)|+C , then

If (x^(4))/((x-1)(x-2))=x^(2)+3x+7+(A)/(x-2)+(B)/(x-1) then A=