Home
Class 12
MATHS
If (x)/((1+x^(2))(3-2x))=(A)/(3-2x)+(Bx+...

If `(x)/((1+x^(2))(3-2x))=(A)/(3-2x)+(Bx+C)/(1+x^(2))` then `C=`

A

`(-1)/(13)`

B

`(2)/(13)`

C

`(-2)/(13)`

D

`(1)/(13)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{x}{(1+x^2)(3-2x)} = \frac{A}{3-2x} + \frac{Bx+C}{1+x^2} \] we will find the value of \( C \). ### Step 1: Combine the Right Side We start by combining the fractions on the right side: \[ \frac{A}{3-2x} + \frac{Bx+C}{1+x^2} = \frac{A(1+x^2) + (Bx+C)(3-2x)}{(3-2x)(1+x^2)} \] ### Step 2: Set the Numerators Equal Now, we equate the numerators since the denominators are the same: \[ x = A(1+x^2) + (Bx+C)(3-2x) \] ### Step 3: Expand the Right Side Expanding the right side gives: \[ x = A + Ax^2 + (3Bx + 3C - 2Bx^2 - 2Cx) \] Combining like terms: \[ x = (A - 2B)x^2 + (3B - 2C + A) \] ### Step 4: Compare Coefficients Now we compare coefficients from both sides of the equation. 1. Coefficient of \( x^2 \): \[ 0 = A - 2B \quad \text{(1)} \] 2. Coefficient of \( x \): \[ 1 = 3B - 2C \quad \text{(2)} \] 3. Constant term: \[ 0 = A + 3C \quad \text{(3)} \] ### Step 5: Solve the System of Equations From equation (1), we can express \( A \) in terms of \( B \): \[ A = 2B \quad \text{(4)} \] Substituting (4) into equation (3): \[ 0 = 2B + 3C \implies 3C = -2B \implies C = -\frac{2}{3}B \quad \text{(5)} \] Now substitute (5) into equation (2): \[ 1 = 3B - 2\left(-\frac{2}{3}B\right) \] \[ 1 = 3B + \frac{4}{3}B \] \[ 1 = \frac{9B + 4B}{3} = \frac{13B}{3} \] \[ B = \frac{3}{13} \] ### Step 6: Find \( C \) Now substitute \( B \) back into equation (5): \[ C = -\frac{2}{3} \cdot \frac{3}{13} = -\frac{2}{13} \] Thus, the value of \( C \) is \[ \boxed{-\frac{2}{13}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Observe the following Lists ul("List - I") A) If (3x)/((x-a)(x-b))=(2)/(x-a)+(1)/(x-b) then a:b is B) If (x+4)/((x^(2)-4)(x+1))=(A)/(x-2)+(B)/(x+2)+(C)/(x+1) then A+B+C is C) If (2x+1)/((x-1)(x^(2)+1))=(A)/(x-1)+(Bx+C)/(x^(2)+1) then C= ul("List - II") 1) Slope of x -axis 2) sin. (3 pi)/(2) 3) {:(" "Lt),(x rarr 0):} (Tan x-Sinx)/(x^(3)) 4) Slope of the line 6x+3y-7=0 The correct match is

Observe the following Lists ul("List - I") A) If (3x)/((x-a)(x-b))=(2)/(x-a)+(1)/(x-b) then a:b is B) If (x+4)/((x^(2)-4)(x+1))=(A)/(x-2)+(B)/(x+2)+(C)/(x+1) then A+B+C is C) If (2x+1)/((x-1)(x^(2)+1))=(A)/(x-1)+(Bx+C)/(x^(2)+1) then C= ul("List - II") 1) Slope of x -axis 2) sin. (3 pi)/(2) 3) {:(" "Lt),(x rarr 0):} (Tan x-Sinx)/(x^(3)) 4) Slope of the line 6x+3y-7=0 The correct match is

If (3x+2)/((x+1)(2x^(2)+3))=(A)/(x+1)-(Bx+C)/(2x^(2)+3) , then A+B-C=

If ((x+1)^(2))/(x(x^(2)+1))=(A)/(x)+(Bx+C)/(x^(2)+1) then cos^(-1)(A/C)=

If (1)/((x-a)(x^(2)+b))=(A)/(x-a)+(Bx+C)/(x^(2)+b) then (1)/((x-a)(x^(2)+b)^(2))=

a : If 1/((x-2)(x^(2)+1))=A/(x-2)+(Bx+C)/(x^(2)+1) " then "A=1/5, B=-1/5, C=-2/5 . R : 1/((x-a)(x^(2)+b))=1/(a^(2)+b)[1/(x-a)-(x+a)/(x^(2)+b)]

If (2x^(2)+5)/((x+1)^(2)(x-3))=(A)/(x+1)+(B)/((x+1)^(2))+(C)/(x-3) then A=

Statement-I : If (x^(2)+3x+1)/(x^(2)+2x+1)=A+(B)/(x+1)+(C)/((x+1)^(2)) , then A+B+C=0 Statement-II: If (x^(2)+2x+3)/(x^(3))=A/x + (B)/(x^(2))+(C)/(x^(3)) , then A+B-C=0 Which of the above statements is true

If (x+1)^(2)/(x^(3)+x)=A/x+(Bx+C)/(x^(2)+1) " then "Sin^(-1)(A/C)=

If (x+1)/(x^(3)+x)=A/x +(Bx+C)/(x^(2)+1) , then find the principal value of sin^(-1)(A/B) .