Home
Class 12
MATHS
If (x+1)^(2)/(x^(3)+x)=A/x+(Bx+C)/(x^(2)...

If `(x+1)^(2)/(x^(3)+x)=A/x+(Bx+C)/(x^(2)+1) " then "Sin^(-1)(A/C)=`

A

`pi/6`

B

`pi/4`

C

`pi/3`

D

`pi/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to express the given fraction \(\frac{(x+1)^{2}}{x^{3}+x}\) in terms of partial fractions. Let's go through the solution step by step. ### Step 1: Factor the Denominator First, we need to factor the denominator \(x^3 + x\): \[ x^3 + x = x(x^2 + 1) \] So, we can rewrite the expression as: \[ \frac{(x+1)^{2}}{x(x^{2}+1)} \] ### Step 2: Set Up the Partial Fraction Decomposition We want to express this as: \[ \frac{(x+1)^{2}}{x(x^{2}+1)} = \frac{A}{x} + \frac{Bx + C}{x^{2}+1} \] where \(A\), \(B\), and \(C\) are constants to be determined. ### Step 3: Combine the Right Side To combine the right side over a common denominator: \[ \frac{A}{x} + \frac{Bx + C}{x^{2}+1} = \frac{A(x^{2}+1) + (Bx+C)x}{x(x^{2}+1)} \] This simplifies to: \[ \frac{Ax^{2} + A + Bx^{2} + Cx}{x(x^{2}+1)} = \frac{(A + B)x^{2} + Cx + A}{x(x^{2}+1)} \] ### Step 4: Set the Numerators Equal Now we equate the numerators: \[ (A + B)x^{2} + Cx + A = (x + 1)^{2} \] Expanding \((x + 1)^{2}\): \[ (x + 1)^{2} = x^{2} + 2x + 1 \] Thus, we have: \[ (A + B)x^{2} + Cx + A = x^{2} + 2x + 1 \] ### Step 5: Compare Coefficients Now we can compare the coefficients from both sides: 1. For \(x^{2}\): \(A + B = 1\) 2. For \(x\): \(C = 2\) 3. For the constant term: \(A = 1\) ### Step 6: Solve the Equations From \(A = 1\): \[ A = 1 \] Substituting \(A\) into the first equation: \[ 1 + B = 1 \implies B = 0 \] And from the second equation: \[ C = 2 \] ### Step 7: Find \(A\) and \(C\) We have: \[ A = 1, \quad C = 2 \] ### Step 8: Calculate \(\sin^{-1}\left(\frac{A}{C}\right)\) Now we need to find: \[ \sin^{-1}\left(\frac{A}{C}\right) = \sin^{-1}\left(\frac{1}{2}\right) \] The value of \(\sin^{-1}\left(\frac{1}{2}\right)\) is: \[ \frac{\pi}{6} \] ### Final Answer Thus, the final answer is: \[ \sin^{-1}\left(\frac{A}{C}\right) = \frac{\pi}{6} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If ((x+1)^(2))/(x(x^(2)+1))=(A)/(x)+(Bx+C)/(x^(2)+1) then cos^(-1)(A/C)=

If (x+1)/(x^(3)+x)=A/x +(Bx+C)/(x^(2)+1) , then find the principal value of sin^(-1)(A/B) .

If (1-x+6x^(2))/(x-x^(3))=A/x +(B)/(1-x)+(C)/(1+x) , then A=

a : If 1/((x-2)(x^(2)+1))=A/(x-2)+(Bx+C)/(x^(2)+1) " then "A=1/5, B=-1/5, C=-2/5 . R : 1/((x-a)(x^(2)+b))=1/(a^(2)+b)[1/(x-a)-(x+a)/(x^(2)+b)]

If (x)/((1+x^(2))(3-2x))=(A)/(3-2x)+(Bx+C)/(1+x^(2)) then C=

If (3x+2)/((x+1)(2x^(2)+3))=(A)/(x+1)-(Bx+C)/(2x^(2)+3) , then A+B-C=

If (1)/((x-a)(x^(2)+b))=(A)/(x-a)+(Bx+C)/(x^(2)+b) then (1)/((x-a)(x^(2)+b)^(2))=

If (x^(2)-5x+7)/(x-1)^(3)=A/(x-1)+B/(x-1)^(2)+C/(x-1)^(3) " then " A+B-C=

If (x^(2)+x+2)/(x^(2)+2x+1)=A+(B)/(x+1)+(C)/((x+1)^(2)) , then find the value of A+B+C .

Observe the following Lists ul("List - I") A) If (3x)/((x-a)(x-b))=(2)/(x-a)+(1)/(x-b) then a:b is B) If (x+4)/((x^(2)-4)(x+1))=(A)/(x-2)+(B)/(x+2)+(C)/(x+1) then A+B+C is C) If (2x+1)/((x-1)(x^(2)+1))=(A)/(x-1)+(Bx+C)/(x^(2)+1) then C= ul("List - II") 1) Slope of x -axis 2) sin. (3 pi)/(2) 3) {:(" "Lt),(x rarr 0):} (Tan x-Sinx)/(x^(3)) 4) Slope of the line 6x+3y-7=0 The correct match is