Home
Class 12
MATHS
If (x^(3)+x^(2)+1)/((x^(2)+2)(x^(2)+3))=...

If `(x^(3)+x^(2)+1)/((x^(2)+2)(x^(2)+3))=(Ax+B)/(x^(2)+2)+(Cx+D)/(x^(2)+3)`, then `A+B+C+D=`

A

1

B

4

C

3

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{x^3 + x^2 + 1}{(x^2 + 2)(x^2 + 3)} = \frac{Ax + B}{x^2 + 2} + \frac{Cx + D}{x^2 + 3}, \] we will follow these steps: ### Step 1: Combine the Right Side First, we will combine the right-hand side into a single fraction: \[ \frac{Ax + B}{x^2 + 2} + \frac{Cx + D}{x^2 + 3} = \frac{(Ax + B)(x^2 + 3) + (Cx + D)(x^2 + 2)}{(x^2 + 2)(x^2 + 3)}. \] ### Step 2: Expand the Numerator Now, we will expand the numerator: \[ (Ax + B)(x^2 + 3) = Ax^3 + 3Ax + Bx^2 + 3B, \] \[ (Cx + D)(x^2 + 2) = Cx^3 + 2Cx + Dx^2 + 2D. \] Combining these, we get: \[ Ax^3 + 3Ax + Bx^2 + 3B + Cx^3 + 2Cx + Dx^2 + 2D = (A + C)x^3 + (B + D)x^2 + (3A + 2C)x + (3B + 2D). \] ### Step 3: Set the Numerators Equal Now we set the numerators equal to each other: \[ x^3 + x^2 + 1 = (A + C)x^3 + (B + D)x^2 + (3A + 2C)x + (3B + 2D). \] ### Step 4: Compare Coefficients Now we will compare the coefficients of both sides: 1. Coefficient of \(x^3\): \[ 1 = A + C \quad \text{(Equation 1)} \] 2. Coefficient of \(x^2\): \[ 1 = B + D \quad \text{(Equation 2)} \] 3. Coefficient of \(x\): \[ 0 = 3A + 2C \quad \text{(Equation 3)} \] 4. Constant term: \[ 1 = 3B + 2D \quad \text{(Equation 4)} \] ### Step 5: Solve the Equations From Equation 1, we have: \[ C = 1 - A. \] Substituting \(C\) into Equation 3: \[ 0 = 3A + 2(1 - A) \implies 0 = 3A + 2 - 2A \implies A = -2. \] Now substituting \(A\) back into Equation 1: \[ 1 = -2 + C \implies C = 3. \] Now substituting \(A\) into Equation 2: \[ 1 = B + D \quad \text{(Equation 2)} \] Substituting \(B\) into Equation 4: \[ 1 = 3B + 2D. \] We can express \(D\) from Equation 2: \[ D = 1 - B. \] Substituting \(D\) into Equation 4: \[ 1 = 3B + 2(1 - B) \implies 1 = 3B + 2 - 2B \implies B = -1. \] Now substituting \(B\) back into Equation 2: \[ 1 = -1 + D \implies D = 2. \] ### Step 6: Calculate \(A + B + C + D\) Now we have: - \(A = -2\) - \(B = -1\) - \(C = 3\) - \(D = 2\) Calculating \(A + B + C + D\): \[ A + B + C + D = -2 - 1 + 3 + 2 = 2. \] ### Final Answer Thus, the value of \(A + B + C + D\) is \[ \boxed{2}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (x^(2)+3)/((x^(2)+2)(x^(2)+5))=(Ax+B)/(x^(2)+2)+(Cx+D)/(x^(2)+5) , then find the value of A+C .

If 1/(x^(4)+x^(2)+1)=(Ax+B)/(x^(2)+x+1)+(Cx+D)/(x^(2)-x+1) " then "C+D=

If (3x+2)/((x+1)(2x^(2)+3))=(A)/(x+1)-(Bx+C)/(2x^(2)+3) , then A+B-C=

(2x^(4)+3x^(2)+1)/((x^(2)+1)^(4))=(A)/((x^(2)+1))+(B)/((x^(2)+1^(2)))+(C)/((x^(2)+1)^(3))+(D)/((x^(2)+1)^(4)) then Match the following. {:(" List - I"," List - II"),("1) A","(a) 2"),("2) B","(b) 1"),("3) C","(c) -1"),("4) D","(d) 0"), (,"(e) 1/2"):}

If (x^(4))/((x-1)(x-2)(x-3))= A.x+B. (1)/((x-1))+C (1)/((x-2))+D. (1)/((x-3))+E , then A+B+C+D+E=

(3x^(2)+x+1)/((x-1)^(4))=(A)/(x-1)+(B)/((x-1)^(2))+(C)/((x-1)^(3))+(D)/((x-1)^(4)) then A+B-C+D=

Assertion (A) : If (1)/(x^(3)(x+2))=A/x + B/x^(2) +C/x^(3) + D/(x+2) then A = 1/8, B= -1/4, C = 1/2, D= -1/8 Reason (R) : (1)/(x^(3)(x+a))=(1)/(a^(3)x)-(1)/(a^(2)x^(2))+(1)/(ax^(3))-(1)/(a^(3)(x+a))

If int (dx)/(x ^(4) (1+x^(3))^2)=a ln |(1+x ^(3))/(x ^(3))| +(b)/(x ^(3)) +(c)/(1+ x^(2)) +d. then (where d is arbitrary constant)

If (2x^(3)+1)/((x-1)(x+1)(x+2))=A+(B)/(x-1)+(C)/(x+1)+(D)/(x+2) , then find the value of A+B+C+D .

Resolve into Partial Fractions If (1)/(x^(3)(x+3))=(1)/(Ax) - (1)/(Bx^(2))+(1)/(Cx^(3))-(1)/(D(x+3)) then find the values of A, B, C and D.