Home
Class 12
MATHS
If (1)/((x-a)(x^(2)+b))=(A)/(x-a)+(Bx+C)...

If `(1)/((x-a)(x^(2)+b))=(A)/(x-a)+(Bx+C)/(x^(2)+b)` then `(1)/((x-a)(x^(2)+b)^(2))=`

A

`(A^(2))/(x-a)+(A(Bx+C))/(x^(2)+b)+(Bx+C)/(x^(2)+b)^(2)`

B

`(A^(2))/(x+a)+(A(Bx-C))/(x^(2)+b)+(Bx+C)/((x^(2)-b)^(2))`

C

`(A^(2))/(x+a)+(A(Bx+C))/(x^(2)+b)+(Bx-C)/((x^(2)+b)^(2))`

D

`(A^(2))/(x-a)+(A(Bx-C))/(x^(2)-b)+(Bx+C)/((x^(2)-b)^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{1}{(x-a)(x^2+b)} = \frac{A}{x-a} + \frac{Bx+C}{x^2+b} \] we will follow these steps: ### Step 1: Combine the Right Side First, we will combine the right-hand side into a single fraction: \[ \frac{A}{x-a} + \frac{Bx+C}{x^2+b} = \frac{A(x^2+b) + (Bx+C)(x-a)}{(x-a)(x^2+b)} \] ### Step 2: Expand the Numerator Next, we will expand the numerator: \[ A(x^2+b) + (Bx+C)(x-a) = Ax^2 + Ab + Bx^2 - Bax + Cx - Ca \] Combining like terms: \[ (A + B)x^2 + (C - Ba)x + (Ab - Ca) \] ### Step 3: Set the Numerators Equal Now, we equate the numerators from both sides of the equation: \[ 1 = (A + B)x^2 + (C - Ba)x + (Ab - Ca) \] ### Step 4: Coefficient Comparison Since the left side is just 1, we can compare coefficients: 1. Coefficient of \(x^2\): \(A + B = 0\) 2. Coefficient of \(x\): \(C - Ba = 0\) 3. Constant term: \(Ab - Ca = 1\) ### Step 5: Solve the System of Equations From the first equation, we have: \[ B = -A \] Substituting \(B = -A\) into the second equation: \[ C - (-A)a = 0 \implies C + Aa = 0 \implies C = -Aa \] Substituting \(B = -A\) and \(C = -Aa\) into the third equation: \[ A(b + Aa) = 1 \] This gives us: \[ A(b + Aa) = 1 \implies A = \frac{1}{b + Aa} \] ### Step 6: Finding the Value of \(A\) To find \(A\), we can rearrange: \[ A(b + Aa) = 1 \implies A = \frac{1}{b + Aa} \implies A^2a + Ab - 1 = 0 \] This is a quadratic equation in \(A\). Solving for \(A\) gives us: \[ A = \frac{-b \pm \sqrt{b^2 + 4a}}{2a} \] ### Step 7: Substitute Back to Find \(B\) and \(C\) Using the value of \(A\) found, we can substitute back to find \(B\) and \(C\): \[ B = -A, \quad C = -Aa \] ### Step 8: Final Expression Now we can express: \[ \frac{1}{(x-a)(x^2+b)^2} = \frac{A}{(x-a)} + \frac{Bx+C}{(x^2+b)^2} \] This completes the solution. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If (x)/((1+x^(2))(3-2x))=(A)/(3-2x)+(Bx+C)/(1+x^(2)) then C=

If ((x+1)^(2))/(x(x^(2)+1))=(A)/(x)+(Bx+C)/(x^(2)+1) then cos^(-1)(A/C)=

If (3x+2)/((x+1)(2x^(2)+3))=(A)/(x+1)-(Bx+C)/(2x^(2)+3) , then A+B-C=

If (x+1)^(2)/(x^(3)+x)=A/x+(Bx+C)/(x^(2)+1) " then "Sin^(-1)(A/C)=

a : If 1/((x-2)(x^(2)+1))=A/(x-2)+(Bx+C)/(x^(2)+1) " then "A=1/5, B=-1/5, C=-2/5 . R : 1/((x-a)(x^(2)+b))=1/(a^(2)+b)[1/(x-a)-(x+a)/(x^(2)+b)]

(3x^(2)+x+1)/((x-1)^(4))=(A)/(x-1)+(B)/((x-1)^(2))+(C)/((x-1)^(3))+(D)/((x-1)^(4)) then A+B-C+D=

If (2x^(2)+5)/((x+1)^(2)(x-3))=(A)/(x+1)+(B)/((x+1)^(2))+(C)/(x-3) then A=

If (x^(2)+x+1)/(x^(2)+2x+1)=A+B/(x+1)+C/(x+1)^(2) then A - B =

Prove that (ax^(2))/((x -a)(x-b)(x-c))+(bx)/((x -b)(x-c))+(c)/(x-c)+1 = (x^(3))/((x-a)(x-b)(x-c)) .

If (x^(4))/((x-1)(x-2)(x-3))= A.x+B. (1)/((x-1))+C (1)/((x-2))+D. (1)/((x-3))+E , then A+B+C+D+E=