Home
Class 12
MATHS
If a(K)=(1)/(K(K+1)) for K=1, 2, 3....n,...

If `a_(K)=(1)/(K(K+1))` for `K=1, 2, 3....n`, then `(sum_(K=1)^(n)a_(K))^(2)=`

A

`(n)/(n+1)`

B

`(n^(2))/((n+1)^(2))`

C

`(n^(4))/((n+1)^(4))`

D

`(n^(6))/((n+1)^(6))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression for \((\sum_{K=1}^{n} a_{K})^{2}\) where \(a_{K} = \frac{1}{K(K+1)}\). ### Step-by-step Solution: 1. **Identify the expression for \(a_{K}\)**: \[ a_{K} = \frac{1}{K(K+1)} \] 2. **Decompose \(a_{K}\) into partial fractions**: We can express \(a_{K}\) as: \[ a_{K} = \frac{1}{K} - \frac{1}{K+1} \] 3. **Set up the summation**: We need to compute: \[ \sum_{K=1}^{n} a_{K} = \sum_{K=1}^{n} \left( \frac{1}{K} - \frac{1}{K+1} \right) \] 4. **Evaluate the summation**: This is a telescoping series. When we expand it, we get: \[ \sum_{K=1}^{n} \left( \frac{1}{K} - \frac{1}{K+1} \right) = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \ldots + \left(\frac{1}{n} - \frac{1}{n+1}\right) \] Most terms cancel out, leaving us with: \[ 1 - \frac{1}{n+1} = \frac{n}{n+1} \] 5. **Square the result**: Now we square the result of the summation: \[ \left( \sum_{K=1}^{n} a_{K} \right)^{2} = \left( \frac{n}{n+1} \right)^{2} = \frac{n^{2}}{(n+1)^{2}} \] ### Final Result: Thus, the final answer is: \[ \left( \sum_{K=1}^{n} a_{K} \right)^{2} = \frac{n^{2}}{(n+1)^{2}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

T_(k) = K ^(3) + 3 ^(k) , then find sum_(k =1) ^( n ) T _(k).

If a_(1),a_(2),".....", are in HP and f_(k)=sum_(r=1)^(n)a_(r)-a_(k) , then 2^(alpha_(1)),2^(alpha_(2)),2^(alpha_(3))2^(alpha_(4)),"....." are in {" where " alpha_(1)=(a_(1))/(f_(1)),alpha_(2)=(a_(2))/(f_(2)),alpha_(3)=(a_(3))/(f_(3)),"....."} .

Evaluate : sum_(k=1)^n (2^k+3^(k-1))

Find the sum_(k=1)^(oo) sum_(n=1)^(oo)k/(2^(n+k)) .

The sequence a_(1), a_(2), a_(3), ..... a_(98) satisfies the relation a_(n + 1) = a_(n) +1" for " n = 1, 2, 3,..... 97 and has the sum equal to 4949. Evaluate sum_(k=1)^(49) a_(2k)

If a_(a), a _(2), a _(3),…., a_(n) are in H.P. and f (k)=sum _(r =1) ^(n) a_(r)-a_(k) then (a_(1))/(f(1)), (a_(2))/(f (2)), (a_(3))/(f (n)) are in :

If a_(a), a _(2), a _(3),…., a_(n) are in H.P. and f (k)=sum _(r =1) ^(n) a_(r)-a_(k) then (a_(1))/(f(1)), (a_(2))/(f (2)), (a_(3))/(f (n)) are in :

If a_(1),a_(2),a_(3),…a_(n+1) are in arithmetic progression, then sum_(k=0)^(n) .^(n)C_(k.a_(k+1) is equal to (a) 2^(n)(a_(1)+a_(n+1)) (b) 2^(n-1)(a_(1)+a_(n+1)) (c) 2^(n+1)(a_(1)+a_(n+1)) (d) (a_(1)+a_(n+1))

If for n in N ,sum_(k=0)^(2n)(-1)^k(^(2n)C_k)^2=A , then find the value of sum_(k=0)^(2n)(-1)^k(k-2n)(^(2n)C_k)^2dot

If n is a positive integer and C_(k)=""^(n)C_(k) , then the value of sum_(k=1)^(n)k^(3)((C_(k))/(C_(k-1)))^(2) is :