Home
Class 12
MATHS
(3x^(2)+x+1)/(x-1)^(4)=a/(x-1)+b/(x-1)^(...

`(3x^(2)+x+1)/(x-1)^(4)=a/(x-1)+b/(x-1)^(2)+c/(x-1)^(3)+d/(x-1)^(4) rArr [{:(a,b), (c, d):}]=`

A

`[(3,7),(5,0)]`

B

`[(0,3),(7,5)]`

C

`[(0,7),(3,5)]`

D

`[(3,5),(7, 0)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to express the rational function \(\frac{3x^2 + x + 1}{(x-1)^4}\) in terms of partial fractions. We will set it equal to the form: \[ \frac{a}{x-1} + \frac{b}{(x-1)^2} + \frac{c}{(x-1)^3} + \frac{d}{(x-1)^4} \] ### Step 1: Set up the equation We start with the equation: \[ \frac{3x^2 + x + 1}{(x-1)^4} = \frac{a}{x-1} + \frac{b}{(x-1)^2} + \frac{c}{(x-1)^3} + \frac{d}{(x-1)^4} \] ### Step 2: Multiply through by \((x-1)^4\) To eliminate the denominators, we multiply both sides by \((x-1)^4\): \[ 3x^2 + x + 1 = a(x-1)^3 + b(x-1)^2 + c(x-1) + d \] ### Step 3: Expand the right-hand side Now we will expand the right-hand side: 1. \(a(x-1)^3 = a(x^3 - 3x^2 + 3x - 1)\) 2. \(b(x-1)^2 = b(x^2 - 2x + 1)\) 3. \(c(x-1) = cx - c\) 4. \(d = d\) Combining these, we get: \[ 3x^2 + x + 1 = ax^3 + (-3a + b)x^2 + (3a - 2b + c)x + (-a + b - c + d) \] ### Step 4: Equate coefficients Now we equate the coefficients of the polynomial on both sides: - Coefficient of \(x^3\): \(a = 0\) - Coefficient of \(x^2\): \(-3a + b = 3\) - Coefficient of \(x\): \(3a - 2b + c = 1\) - Constant term: \(-a + b - c + d = 1\) ### Step 5: Solve the equations From \(a = 0\), we substitute into the other equations: 1. From \(-3(0) + b = 3\) → \(b = 3\) 2. From \(3(0) - 2(3) + c = 1\) → \(-6 + c = 1\) → \(c = 7\) 3. From \(-0 + 3 - 7 + d = 1\) → \(-4 + d = 1\) → \(d = 5\) ### Step 6: Compile the results Now we have: - \(a = 0\) - \(b = 3\) - \(c = 7\) - \(d = 5\) Thus, the values are: \[ (a, b) = (0, 3) \quad \text{and} \quad (c, d) = (7, 5) \] ### Step 7: Form the array The array \(\{(a, b), (c, d)\}\) is: \[ \begin{pmatrix} 0 & 3 \\ 7 & 5 \end{pmatrix} \] ### Final Answer The answer is: \[ \{(0, 3), (7, 5)\} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(3x^(2)+x+1)/((x-1)^(4))=(A)/(x-1)+(B)/((x-1)^(2))+(C)/((x-1)^(3))+(D)/((x-1)^(4)) then A+B-C+D=

If (x^(2)-5x+7)/(x-1)^(3)=A/(x-1)+B/(x-1)^(2)+C/(x-1)^(3) " then " A+B-C=

((x+1))/((2x-1)(3x+1))=A/((2x-1))+B/((3x+1)) rArr 16A+9B=

x^(3)/((2x-1)(x+2)(x-3))=A+B/(2x-1)+C/(x+2)+D/(x-3) rArr A =

IF ax^3+bx^2+cx+d = |(x^2,(x-1)^2, (x-2)^2) ,((x-1)^2, (x-2)^2, (x-3)^2), ((x-2)^2, (x-3)^2, (x-4)^2)| , then d= (A) 1 (B) -8 (C) 0 (D) none of these

If (x^(4)+24x^(2)+28)/((x^(2)+1)^(3))=A/((x^(2)+1))+B/((x^(2)+1)^(2))+C/((x^(2)+1)^(3)) , then A + C =

(2x^(4)+3x^(2)+1)/((x^(2)+1)^(4))=(A)/((x^(2)+1))+(B)/((x^(2)+1^(2)))+(C)/((x^(2)+1)^(3))+(D)/((x^(2)+1)^(4)) then Match the following. {:(" List - I"," List - II"),("1) A","(a) 2"),("2) B","(b) 1"),("3) C","(c) -1"),("4) D","(d) 0"), (,"(e) 1/2"):}

If f(x)=|(1, x, x+1), (2x, x(x-1), (x+1)x), (3x(x-1), x(x-1)(x-2), (x+1)x(x-1))| then f(5000) is equal to 0 b. 1 c. 500 d. -500

If (x^(4))/((x-1)(x-2)(x-3))= A.x+B. (1)/((x-1))+C (1)/((x-2))+D. (1)/((x-3))+E , then A+B+C+D+E=

intdx/((x-1)^(3/4)(x+2)^(5/4))= (A) 4/3((x-1)/(x+2))^(1/4)+c (B) 4/3sqrt((x-1)/(x+2))+c (C) 4/3((x+2)/(x-1))^(1/4)+c (D) none of these