Home
Class 12
MATHS
Statement-I : If (x^(2)+3x+1)/(x^(2)+2...

Statement-I :
If `(x^(2)+3x+1)/(x^(2)+2x+1)=A+(B)/(x+1)+(C)/((x+1)^(2))`, then `A+B+C=0`
Statement-II:
If `(x^(2)+2x+3)/(x^(3))=A/x + (B)/(x^(2))+(C)/(x^(3))`, then `A+B-C=0`
Which of the above statements is true

A

only I is true

B

only II is true

C

both I & II are true

D

neither I nor II true

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze both statements separately and verify their validity. ### Statement I: We have the expression: \[ \frac{x^2 + 3x + 1}{x^2 + 2x + 1} = A + \frac{B}{x+1} + \frac{C}{(x+1)^2} \] 1. **Factor the denominator**: The denominator \(x^2 + 2x + 1\) can be factored as: \[ (x + 1)^2 \] So we rewrite the equation: \[ \frac{x^2 + 3x + 1}{(x + 1)^2} = A + \frac{B}{x + 1} + \frac{C}{(x + 1)^2} \] 2. **Combine the right-hand side**: To combine the right-hand side, we need a common denominator: \[ A + \frac{B}{x + 1} + \frac{C}{(x + 1)^2} = \frac{A(x + 1)^2 + B(x + 1) + C}{(x + 1)^2} \] 3. **Set the numerators equal**: Now, we equate the numerators: \[ x^2 + 3x + 1 = A(x + 1)^2 + B(x + 1) + C \] 4. **Expand the right-hand side**: Expanding \(A(x + 1)^2\): \[ A(x^2 + 2x + 1) = Ax^2 + 2Ax + A \] Expanding \(B(x + 1)\): \[ Bx + B \] Thus, the right-hand side becomes: \[ Ax^2 + (2A + B)x + (A + B + C) \] 5. **Compare coefficients**: From the left-hand side \(x^2 + 3x + 1\), we have: - Coefficient of \(x^2\): \(A = 1\) - Coefficient of \(x\): \(2A + B = 3\) - Constant term: \(A + B + C = 1\) 6. **Substituting \(A\)**: Since \(A = 1\): - From \(2A + B = 3\): \[ 2(1) + B = 3 \implies B = 1 \] - From \(A + B + C = 1\): \[ 1 + 1 + C = 1 \implies C = -1 \] 7. **Calculate \(A + B + C\)**: \[ A + B + C = 1 + 1 - 1 = 1 \] Thus, Statement I is **false** because \(A + B + C \neq 0\). ### Statement II: We have the expression: \[ \frac{x^2 + 2x + 3}{x^3} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x^3} \] 1. **Combine the right-hand side**: The right-hand side can be written as: \[ \frac{A x^2 + B x + C}{x^3} \] 2. **Set the numerators equal**: Equating the numerators gives: \[ x^2 + 2x + 3 = A x^2 + B x + C \] 3. **Compare coefficients**: From the left-hand side \(x^2 + 2x + 3\), we have: - Coefficient of \(x^2\): \(A = 1\) - Coefficient of \(x\): \(B = 2\) - Constant term: \(C = 3\) 4. **Calculate \(A + B - C\)**: \[ A + B - C = 1 + 2 - 3 = 0 \] Thus, Statement II is **true**. ### Conclusion: - Statement I is false. - Statement II is true. ### Final Answer: Only Statement II is true.
Promotional Banner

Similar Questions

Explore conceptually related problems

Statement-I : If (3x+4)/((x+1)^(2)(x-1))=(A)/(x-1)+(B)/(x+1)+(C)/((x+1)^(2)) then A=7//4 Statement-II : If (px+q)/((2x-3)^(2))=(1)/(2x-3)+(3)/((2x-3)^(2)) then p=2, q=3 . Which of the above statements is true

If (1-x+6x^(2))/(x-x^(3))=A/x +(B)/(1-x)+(C)/(1+x) , then A=

If (x^(2)-5x+7)/(x-1)^(3)=A/(x-1)+B/(x-1)^(2)+C/(x-1)^(3) " then " A+B-C=

If (2x^(2)+5)/((x+1)^(2)(x-3))=(A)/(x+1)+(B)/((x+1)^(2))+(C)/(x-3) then A=

If (3x+2)/((x+1)(2x^(2)+3))=(A)/(x+1)-(Bx+C)/(2x^(2)+3) , then A+B-C=

If (x^(2)+x+2)/(x^(2)+2x+1)=A+(B)/(x+1)+(C)/((x+1)^(2)) , then find the value of A+B+C .

If (x)/((1+x^(2))(3-2x))=(A)/(3-2x)+(Bx+C)/(1+x^(2)) then C=

(3x^(2)+x+1)/((x-1)^(4))=(A)/(x-1)+(B)/((x-1)^(2))+(C)/((x-1)^(3))+(D)/((x-1)^(4)) then A+B-C+D=

x^(3)/((2x-1)(x+2)(x-3))=A+B/(2x-1)+C/(x+2)+D/(x-3) rArr A =

If (x^(4))/((x-1)(x-2)(x-3))= A.x+B. (1)/((x-1))+C (1)/((x-2))+D. (1)/((x-3))+E , then A+B+C+D+E=