Home
Class 12
MATHS
Statement-I : If (3x+4)/((x+1)^(2)(x-1...

Statement-I :
If `(3x+4)/((x+1)^(2)(x-1))=(A)/(x-1)+(B)/(x+1)+(C)/((x+1)^(2))` then `A=7//4`
Statement-II :
If `(px+q)/((2x-3)^(2))=(1)/(2x-3)+(3)/((2x-3)^(2))` then `p=2, q=3`. Which of the above statements is true

A

only I is true

B

only II is true

C

both I & II are true

D

neither I nor II true

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze both statements separately and determine their validity. ### Statement I: We need to verify if: \[ \frac{3x + 4}{(x + 1)^2 (x - 1)} = \frac{A}{x - 1} + \frac{B}{x + 1} + \frac{C}{(x + 1)^2} \] is true for \( A = \frac{7}{4} \). **Step 1: Set up the equation** We start with the left-hand side (LHS): \[ \frac{3x + 4}{(x + 1)^2 (x - 1)} \] And the right-hand side (RHS): \[ \frac{A}{x - 1} + \frac{B}{x + 1} + \frac{C}{(x + 1)^2} \] **Step 2: Find a common denominator for the RHS** The common denominator is \((x - 1)(x + 1)^2\). Thus, we rewrite the RHS: \[ \frac{A(x + 1)^2 + B(x - 1)(x + 1) + C(x - 1)}{(x - 1)(x + 1)^2} \] **Step 3: Equate the numerators** Now we equate the numerators: \[ 3x + 4 = A(x + 1)^2 + B(x - 1)(x + 1) + C(x - 1) \] **Step 4: Expand the right-hand side** Expanding each term: - \(A(x + 1)^2 = A(x^2 + 2x + 1)\) - \(B(x - 1)(x + 1) = B(x^2 - 1)\) - \(C(x - 1) = Cx - C\) Combining these gives: \[ Ax^2 + 2Ax + A + Bx^2 - B + Cx - C \] Combining like terms: \[ (A + B)x^2 + (2A + C)x + (A - B - C) \] **Step 5: Set coefficients equal** Now we compare coefficients with \(3x + 4\): 1. Coefficient of \(x^2\): \(A + B = 0\) 2. Coefficient of \(x\): \(2A + C = 3\) 3. Constant term: \(A - B - C = 4\) **Step 6: Solve the equations** From \(A + B = 0\), we have \(B = -A\). Substituting \(B\) in the other equations: - \(2A + C = 3\) - \(A - (-A) - C = 4 \Rightarrow 2A - C = 4\) Now we can solve these two equations: 1. \(2A + C = 3\) 2. \(2A - C = 4\) Adding these equations: \[ 4A = 7 \Rightarrow A = \frac{7}{4} \] Substituting \(A\) back into \(2A + C = 3\): \[ 2 \cdot \frac{7}{4} + C = 3 \Rightarrow \frac{14}{4} + C = 3 \Rightarrow C = 3 - \frac{14}{4} = 3 - \frac{7}{2} = \frac{6}{2} - \frac{7}{2} = -\frac{1}{2} \] Now substituting \(A\) back to find \(B\): \[ B = -A = -\frac{7}{4} \] **Conclusion for Statement I:** The value of \(A\) is indeed \(\frac{7}{4}\), so Statement I is true. --- ### Statement II: We need to verify if: \[ \frac{px + q}{(2x - 3)^2} = \frac{1}{2x - 3} + \frac{3}{(2x - 3)^2} \] is true for \(p = 2\) and \(q = 3\). **Step 1: Set up the equation** The LHS is: \[ \frac{px + q}{(2x - 3)^2} \] The RHS is: \[ \frac{1}{2x - 3} + \frac{3}{(2x - 3)^2} \] **Step 2: Find a common denominator for the RHS** The common denominator is \((2x - 3)^2\): \[ \frac{(2x - 3) + 3}{(2x - 3)^2} = \frac{2x}{(2x - 3)^2} \] **Step 3: Equate the numerators** Now we equate the numerators: \[ px + q = 2x \] **Step 4: Substitute values** Substituting \(p = 2\) and \(q = 3\): \[ 2x + 3 \neq 2x \] **Conclusion for Statement II:** The equation does not hold true, hence Statement II is false. ### Final Answer: - Statement I is true. - Statement II is false.
Promotional Banner

Similar Questions

Explore conceptually related problems

Statement-I : If (x^(2)+3x+1)/(x^(2)+2x+1)=A+(B)/(x+1)+(C)/((x+1)^(2)) , then A+B+C=0 Statement-II: If (x^(2)+2x+3)/(x^(3))=A/x + (B)/(x^(2))+(C)/(x^(3)) , then A+B-C=0 Which of the above statements is true

If (3x+2)/((x+1)(2x^(2)+3))=(A)/(x+1)-(Bx+C)/(2x^(2)+3) , then A+B-C=

If (x^(2)-5x+7)/(x-1)^(3)=A/(x-1)+B/(x-1)^(2)+C/(x-1)^(3) " then " A+B-C=

If (x^(4))/((x-1)(x-2))=x^(2)+3x+7+(A)/(x-2)+(B)/(x-1) then A=

Statement-I : ((x-y)/(x))+(1)/(2)((x-y)/(x))^(2)+(1)/(3)((x-y)/(x))^(3)+….=log_(e )x-log_(e )y Statement-II : (a-1)-((a-1)^(2))/(2)+((a-1)^(3))/(3)-((a-1)^(4))/(4 )+….=log_(e )a Which of the above statements true

x^(3)/((2x-1)(x+2)(x-3))=A+B/(2x-1)+C/(x+2)+D/(x-3) rArr A =

(3x^(2)+x+1)/((x-1)^(4))=(A)/(x-1)+(B)/((x-1)^(2))+(C)/((x-1)^(3))+(D)/((x-1)^(4)) then A+B-C+D=

If (x^(4)+24x^(2)+28)/((x^(2)+1)^(3))=A/((x^(2)+1))+B/((x^(2)+1)^(2))+C/((x^(2)+1)^(3)) , then A + C =

Solve : (i) x(x+1)+(x+2)(x+3)=42 (ii) (1)/(x+1)-(2)/(x+2)=(3)/(x+3)-(4)/(x+4)

("lim")_(xvec1)((x^4+x^2+x+1)/(x^2-x+1))^(1-"cos"(x+1))/((x+1)^(2))i se q u a lto 1 (b) (2/3)^(1/2) (c) (3/2)^(1/2) (d) e^(1/2)