Home
Class 12
MATHS
If (1)/((1+2x)(1-x^(2)))=(A)/(1+2x)+(B)/...

If `(1)/((1+2x)(1-x^(2)))=(A)/(1+2x)+(B)/(1+x)+(C)/(1-x)` then assending order of A, B, C.

A

A, B, C

B

B, C, A

C

C, A, B

D

B, A, C

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{1}{(1 + 2x)(1 - x^2)} = \frac{A}{1 + 2x} + \frac{B}{1 + x} + \frac{C}{1 - x} \] we will first express the left-hand side in terms of partial fractions. Let's break down the steps: ### Step 1: Rewrite the denominator The denominator can be factored as follows: \[ 1 - x^2 = (1 - x)(1 + x) \] Thus, we can rewrite the equation as: \[ \frac{1}{(1 + 2x)(1 - x)(1 + x)} = \frac{A}{1 + 2x} + \frac{B}{1 + x} + \frac{C}{1 - x} \] ### Step 2: Find a common denominator The common denominator for the right-hand side is: \[ (1 + 2x)(1 + x)(1 - x) \] Now, we can express the right-hand side as: \[ \frac{A(1 + x)(1 - x) + B(1 + 2x)(1 - x) + C(1 + 2x)(1 + x)}{(1 + 2x)(1 + x)(1 - x)} \] ### Step 3: Set the numerators equal Since the denominators are equal, we can set the numerators equal to each other: \[ 1 = A(1 + x)(1 - x) + B(1 + 2x)(1 - x) + C(1 + 2x)(1 + x) \] ### Step 4: Expand the right-hand side Now, we will expand the right-hand side: 1. For \(A(1 + x)(1 - x)\): \[ A(1 - x^2) \] 2. For \(B(1 + 2x)(1 - x)\): \[ B(1 - x + 2x - 2x^2) = B(1 + x - 2x^2) \] 3. For \(C(1 + 2x)(1 + x)\): \[ C(1 + x + 2x + 2x^2) = C(1 + 3x + 2x^2) \] Combining these, we have: \[ 1 = A(1 - x^2) + B(1 + x - 2x^2) + C(1 + 3x + 2x^2) \] ### Step 5: Collect like terms Now, we can collect like terms: \[ 1 = (A + B + C) + (B + 3C)x + (-A - 2B + 2C)x^2 \] ### Step 6: Set up equations Now, we can set up the equations by comparing coefficients: 1. Constant term: \(A + B + C = 1\) 2. Coefficient of \(x\): \(B + 3C = 0\) 3. Coefficient of \(x^2\): \(-A - 2B + 2C = 0\) ### Step 7: Solve the system of equations From the second equation \(B + 3C = 0\), we can express \(B\) in terms of \(C\): \[ B = -3C \] Substituting \(B\) into the first equation: \[ A - 3C + C = 1 \implies A - 2C = 1 \implies A = 1 + 2C \] Now substitute \(B\) and \(A\) into the third equation: \[ -(1 + 2C) - 2(-3C) + 2C = 0 \] \[ -1 - 2C + 6C + 2C = 0 \implies -1 + 6C = 0 \implies 6C = 1 \implies C = \frac{1}{6} \] Now substituting \(C\) back to find \(B\): \[ B = -3C = -3 \times \frac{1}{6} = -\frac{1}{2} \] And substituting \(C\) into the equation for \(A\): \[ A = 1 + 2C = 1 + 2 \times \frac{1}{6} = 1 + \frac{1}{3} = \frac{4}{3} \] ### Step 8: Summary of values Thus, we have: - \(A = \frac{4}{3}\) - \(B = -\frac{1}{2}\) - \(C = \frac{1}{6}\) ### Step 9: Ascending order of A, B, C Now we can arrange \(A\), \(B\), and \(C\) in ascending order: - \(B = -\frac{1}{2}\) - \(C = \frac{1}{6}\) - \(A = \frac{4}{3}\) Thus, the ascending order is \(B < C < A\). ### Final Answer The ascending order of \(A\), \(B\), and \(C\) is: \[ B, C, A \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (1-x+6x^(2))/(x-x^(3))=A/x +(B)/(1-x)+(C)/(1+x) , then A=

If (1)/((1-2x)^(2)(1-3x))=(A)/(1-2x)+(B)/((1-2x)^(2))+(C)/(1-3x) then match the following {:(" List - I"," List - II"),("I) A","(a) 9"),("II) B","(b) -6"),("III) C","(c) -2"):}

If (x^(2)-10x+13)/((x-1)(x^(2)-5x+6))=(A)/(x-1)+(B)/(x-2)+(C)/(x-3) then write the values of A, B, C in ascending order.

If (2x^(2)+5)/((x+1)^(2)(x-3))=(A)/(x+1)+(B)/((x+1)^(2))+(C)/(x-3) then A=

If (3x+2)/((x+1)(2x^(2)+3))=(A)/(x+1)-(Bx+C)/(2x^(2)+3) , then A+B-C=

If ((x+1)^(2))/(x(x^(2)+1))=(A)/(x)+(Bx+C)/(x^(2)+1) then cos^(-1)(A/C)=

If (2x^(3)+1)/((x-1)(x+1)(x+2))=A+(B)/(x-1)+(C)/(x+1)+(D)/(x+2) , then find the value of A+B+C+D .

If (x^(2)+x+2)/(x^(2)+2x+1)=A+(B)/(x+1)+(C)/((x+1)^(2)) , then find the value of A+B+C .

If 1/(x^(4)+x^(2)+1)=(Ax+B)/(x^(2)+x+1)+(Cx+D)/(x^(2)-x+1) " then "C+D=

If (1)/((x-a)(x^(2)+b))=(A)/(x-a)+(Bx+C)/(x^(2)+b) then (1)/((x-a)(x^(2)+b)^(2))=