Home
Class 12
MATHS
(2x^(4)+3x^(2)+1)/((x^(2)+1)^(4))=(A)/((...

`(2x^(4)+3x^(2)+1)/((x^(2)+1)^(4))=(A)/((x^(2)+1))+(B)/((x^(2)+1^(2)))+(C)/((x^(2)+1)^(3))+(D)/((x^(2)+1)^(4))` then Match the following.
`{:(" List - I"," List - II"),("1) A","(a) 2"),("2) B","(b) 1"),("3) C","(c) -1"),("4) D","(d) 0"), (,"(e) 1/2"):}`

A

d, a, c, d

B

c, a, e, d

C

b, a, e, d

D

c, b, e, d

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{2x^4 + 3x^2 + 1}{(x^2 + 1)^4} = \frac{A}{(x^2 + 1)} + \frac{B}{(x^2 + 1)^2} + \frac{C}{(x^2 + 1)^3} + \frac{D}{(x^2 + 1)^4} \] we will first express the left-hand side in terms of the right-hand side. ### Step 1: Set the equation We start with the equation: \[ 2x^4 + 3x^2 + 1 = A(x^2 + 1)^3 + B(x^2 + 1)^2 + C(x^2 + 1) + D \] ### Step 2: Expand the right-hand side Now, we expand the right-hand side: 1. **Expand \(A(x^2 + 1)^3\)**: \[ A(x^2 + 1)^3 = A(x^6 + 3x^4 + 3x^2 + 1) \] 2. **Expand \(B(x^2 + 1)^2\)**: \[ B(x^2 + 1)^2 = B(x^4 + 2x^2 + 1) \] 3. **Expand \(C(x^2 + 1)\)**: \[ C(x^2 + 1) = Cx^2 + C \] 4. **Combine all terms**: \[ A(x^6 + 3x^4 + 3x^2 + 1) + B(x^4 + 2x^2 + 1) + Cx^2 + D \] ### Step 3: Combine like terms Now we combine like terms: - Coefficient of \(x^6\): \(A\) - Coefficient of \(x^4\): \(3A + B\) - Coefficient of \(x^2\): \(3A + 2B + C\) - Constant term: \(A + B + C + D\) ### Step 4: Set up equations Now we equate coefficients from both sides: 1. For \(x^6\): \[ A = 0 \] 2. For \(x^4\): \[ 3A + B = 2 \implies B = 2 \quad (\text{since } A = 0) \] 3. For \(x^2\): \[ 3A + 2B + C = 3 \implies 2(2) + C = 3 \implies C = -1 \] 4. For the constant term: \[ A + B + C + D = 1 \implies 0 + 2 - 1 + D = 1 \implies D = 0 \] ### Step 5: Collect results We have found: - \(A = 0\) - \(B = 2\) - \(C = -1\) - \(D = 0\) ### Step 6: Match the results Now we match the results with the given options: - \(A = 0\) matches with (d) 0 - \(B = 2\) matches with (a) 2 - \(C = -1\) matches with (c) -1 - \(D = 0\) matches with (d) 0 ### Final Matching Thus, the matches are: 1. A → (d) 0 2. B → (a) 2 3. C → (c) -1 4. D → (d) 0
Promotional Banner

Similar Questions

Explore conceptually related problems

If (1)/((1-2x)^(2)(1-3x))=(A)/(1-2x)+(B)/((1-2x)^(2))+(C)/(1-3x) then match the following {:(" List - I"," List - II"),("I) A","(a) 9"),("II) B","(b) -6"),("III) C","(c) -2"):}

(3x^(2)+x+1)/((x-1)^(4))=(A)/(x-1)+(B)/((x-1)^(2))+(C)/((x-1)^(3))+(D)/((x-1)^(4)) then A+B-C+D=

If (x^(4)+24x^(2)+28)/((x^(2)+1)^(3))=A/((x^(2)+1))+B/((x^(2)+1)^(2))+C/((x^(2)+1)^(3)) , then A + C =

If 1/(x^(4)+x^(2)+1)=(Ax+B)/(x^(2)+x+1)+(Cx+D)/(x^(2)-x+1) " then "C+D=

If (x^(4))/((x-1)(x-2)(x-3))= A.x+B. (1)/((x-1))+C (1)/((x-2))+D. (1)/((x-3))+E , then A+B+C+D+E=

(3x^(2)+x+1)/(x-1)^(4)=a/(x-1)+b/(x-1)^(2)+c/(x-1)^(3)+d/(x-1)^(4) rArr [{:(a,b), (c, d):}]=

If (2x^(3)+1)/((x-1)(x+1)(x+2))=A+(B)/(x-1)+(C)/(x+1)+(D)/(x+2) , then find the value of A+B+C+D .

If int (dx)/(x ^(4) (1+x^(3))^2)=a ln |(1+x ^(3))/(x ^(3))| +(b)/(x ^(3)) +(c)/(1+ x^(2)) +d. then (where d is arbitrary constant)

intdx/((x-1)^(3/4)(x+2)^(5/4))= (A) 4/3((x-1)/(x+2))^(1/4)+c (B) 4/3sqrt((x-1)/(x+2))+c (C) 4/3((x+2)/(x-1))^(1/4)+c (D) none of these

intdx/(sqrt(x)(1+x^2)^(5/4))= (A) (2x)/(1+x^2)^(1/4)+c (B) (2sqrt(x))/(1+x^2)^(1/4)+c (C) (2sqrt(x))/(1+x^2)+c (D) none of these