Home
Class 12
MATHS
Assertion (A) : If (1)/(x^(3)(x+2))=A/x ...

Assertion (A) : If `(1)/(x^(3)(x+2))=A/x + B/x^(2) +C/x^(3) + D/(x+2)` then `A = 1/8, B= -1/4, C = 1/2, D= -1/8`
Reason (R) : `(1)/(x^(3)(x+a))=(1)/(a^(3)x)-(1)/(a^(2)x^(2))+(1)/(ax^(3))-(1)/(a^(3)(x+a))`

A

Both A & R are true and R is correct explanation of A

B

Both A & R are true and R is not correct explanation of A

C

A is true but R is false

D

A is false but R is true

Text Solution

AI Generated Solution

The correct Answer is:
To solve the assertion and verify the values of A, B, C, and D in the equation \[ \frac{1}{x^3(x+2)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x^3} + \frac{D}{x+2} \] we will follow these steps: ### Step 1: Set Up the Equation Start with the equation: \[ \frac{1}{x^3(x+2)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x^3} + \frac{D}{x+2} \] Multiply both sides by the common denominator \(x^3(x+2)\) to eliminate the fractions: \[ 1 = A \cdot x^2(x+2) + B \cdot x(x+2) + C \cdot (x+2) + D \cdot x^3 \] ### Step 2: Expand the Right Side Now, expand the right-hand side: \[ 1 = A(x^3 + 2x^2) + B(x^2 + 2x) + C(x + 2) + Dx^3 \] Combine like terms: \[ 1 = (A + D)x^3 + (2A + B)x^2 + (2B + C)x + 2C \] ### Step 3: Set Up the System of Equations Now, we can compare coefficients from both sides of the equation. Since the left side is just 1 (which can be written as \(0x^3 + 0x^2 + 0x + 1\)), we can set up the following equations: 1. \(A + D = 0\) (coefficient of \(x^3\)) 2. \(2A + B = 0\) (coefficient of \(x^2\)) 3. \(2B + C = 0\) (coefficient of \(x\)) 4. \(2C = 1\) (constant term) ### Step 4: Solve the System of Equations From equation (4): \[ C = \frac{1}{2} \] Substituting \(C\) into equation (3): \[ 2B + \frac{1}{2} = 0 \implies 2B = -\frac{1}{2} \implies B = -\frac{1}{4} \] Substituting \(B\) into equation (2): \[ 2A - \frac{1}{4} = 0 \implies 2A = \frac{1}{4} \implies A = \frac{1}{8} \] Substituting \(A\) into equation (1): \[ \frac{1}{8} + D = 0 \implies D = -\frac{1}{8} \] ### Step 5: Summary of Values Thus, we have found: - \(A = \frac{1}{8}\) - \(B = -\frac{1}{4}\) - \(C = \frac{1}{2}\) - \(D = -\frac{1}{8}\) ### Conclusion The assertion is true, as we have verified the values of A, B, C, and D. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If (x)/((1+x^(2))(3-2x))=(A)/(3-2x)+(Bx+C)/(1+x^(2)) then C=

If (x^(2)-5x+7)/(x-1)^(3)=A/(x-1)+B/(x-1)^(2)+C/(x-1)^(3) " then " A+B-C=

If 1/(x^(4)+x^(2)+1)=(Ax+B)/(x^(2)+x+1)+(Cx+D)/(x^(2)-x+1) " then "C+D=

If (2x^(2)+5)/((x+1)^(2)(x-3))=(A)/(x+1)+(B)/((x+1)^(2))+(C)/(x-3) then A=

If 2x - (1)/(2x) =4 , find : (ii) 8x^(3) - (1)/( 8x^3)

x^(3)/((2x-1)(x+2)(x-3))=A+B/(2x-1)+C/(x+2)+D/(x-3) rArr A =

If (3x+2)/((x+1)(2x^(2)+3))=(A)/(x+1)-(Bx+C)/(2x^(2)+3) , then A+B-C=

If (x^(3)+x^(2)+1)/((x^(2)+2)(x^(2)+3))=(Ax+B)/(x^(2)+2)+(Cx+D)/(x^(2)+3) , then A+B+C+D=

(3x^(2)+x+1)/((x-1)^(4))=(A)/(x-1)+(B)/((x-1)^(2))+(C)/((x-1)^(3))+(D)/((x-1)^(4)) then A+B-C+D=

If x^3-1/(x^3)=14 , then x-1/x=? (a)5 (b) 4 (d) 3 (d) 2