Home
Class 12
MATHS
Find k if fog=gof where f(x)=3x-1, g(x)=...

Find `k` if `fog=gof` where `f(x)=3x-1`, `g(x)=4x+k`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( k \) such that \( f(g(x)) = g(f(x)) \), where \( f(x) = 3x - 1 \) and \( g(x) = 4x + k \), we will follow these steps: ### Step 1: Compute \( f(g(x)) \) First, we need to substitute \( g(x) \) into \( f(x) \): \[ f(g(x)) = f(4x + k) = 3(4x + k) - 1 \] Now, simplify this expression: \[ = 12x + 3k - 1 \] ### Step 2: Compute \( g(f(x)) \) Next, we substitute \( f(x) \) into \( g(x) \): \[ g(f(x)) = g(3x - 1) = 4(3x - 1) + k \] Now, simplify this expression: \[ = 12x - 4 + k \] ### Step 3: Set the two expressions equal to each other Since we have \( f(g(x)) = g(f(x)) \), we can set the two expressions from Steps 1 and 2 equal: \[ 12x + 3k - 1 = 12x - 4 + k \] ### Step 4: Eliminate \( 12x \) from both sides Subtract \( 12x \) from both sides: \[ 3k - 1 = -4 + k \] ### Step 5: Solve for \( k \) Now, rearranging the equation to isolate \( k \): \[ 3k - k = -4 + 1 \] \[ 2k = -3 \] \[ k = -\frac{3}{2} \] ### Final Answer Thus, the value of \( k \) is: \[ \boxed{-\frac{3}{2}} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Find fog and gof , if f(x)=x+1 , g(x)=e^x

Find fog and gof , if f(x)=x+1 , g(x)=sinx

Find fog and gof , if f(x)=x+1 , g(x)=2x+3

Find fog and gof , if f(x)=|x| , g(x)=sinx

Find fog and gof , if f(x)=x^2 , g(x)=cosx

Find fog and gof , if f(x)=sin^(-1)x , g(x)=x^2

find fog If the funtion f(x)=x-1 and g(x)=x-3 .

Find fog and gof if: f(x)=sinx,g(x)=x^(2)

Find fog and gof if: f(x)=e^(x),g(x)=lnx

Find fog and gof , if f(x)=x^2+2 , g(x)=1-1/(1-x)