Home
Class 12
MATHS
If 1/(x^(4)+x^(2)+1)=(Ax+B)/(x^(2)+x+1)+...

If `1/(x^(4)+x^(2)+1)=(Ax+B)/(x^(2)+x+1)+(Cx+D)/(x^(2)-x+1) " then "C+D=`

A

-1

B

1

C

2

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{1}{x^4 + x^2 + 1} = \frac{Ax + B}{x^2 + x + 1} + \frac{Cx + D}{x^2 - x + 1} \] we will follow these steps: ### Step 1: Combine the Right-Hand Side First, we will combine the fractions on the right-hand side. The common denominator will be \((x^2 + x + 1)(x^2 - x + 1)\). \[ \frac{1}{x^4 + x^2 + 1} = \frac{(Ax + B)(x^2 - x + 1) + (Cx + D)(x^2 + x + 1)}{(x^2 + x + 1)(x^2 - x + 1)} \] ### Step 2: Expand the Numerator Now, we will expand the numerator: 1. For \((Ax + B)(x^2 - x + 1)\): \[ Ax^3 - Ax^2 + Ax + Bx^2 - Bx + B = Ax^3 + (-A + B)x^2 + (A - B)x + B \] 2. For \((Cx + D)(x^2 + x + 1)\): \[ Cx^3 + Cx^2 + Cx + Dx^2 + Dx + D = Cx^3 + (C + D)x^2 + (C + D)x + D \] Combining both expansions: \[ (A + C)x^3 + (-A + B + C + D)x^2 + (A - B + C + D)x + (B + D) \] ### Step 3: Set the Numerator Equal to 1 Since the left-hand side is 1, we can set the numerator equal to 1: \[ (A + C)x^3 + (-A + B + C + D)x^2 + (A - B + C + D)x + (B + D) = 1 \] ### Step 4: Compare Coefficients Now we will compare coefficients on both sides: 1. Coefficient of \(x^3\): \[ A + C = 0 \quad \text{(Equation 1)} \] 2. Coefficient of \(x^2\): \[ -A + B + C + D = 0 \quad \text{(Equation 2)} \] 3. Coefficient of \(x\): \[ A - B + C + D = 0 \quad \text{(Equation 3)} \] 4. Constant term: \[ B + D = 1 \quad \text{(Equation 4)} \] ### Step 5: Solve the Equations From Equation 1, we have: \[ C = -A \] Substituting \(C = -A\) into Equations 2 and 3: **Equation 2:** \[ -A + B - A + D = 0 \implies B + D - 2A = 0 \implies B + D = 2A \quad \text{(Equation 5)} \] **Equation 3:** \[ A - B - A + D = 0 \implies -B + D = 0 \implies D = B \quad \text{(Equation 6)} \] ### Step 6: Substitute into Equation 4 Now substitute \(D = B\) into Equation 4: \[ B + B = 1 \implies 2B = 1 \implies B = \frac{1}{2} \] Then, from Equation 6: \[ D = \frac{1}{2} \] ### Step 7: Find \(C + D\) Now we can find \(C\): From Equation 1: \[ C = -A \] Using Equation 5: \[ B + D = 2A \implies \frac{1}{2} + \frac{1}{2} = 2A \implies 1 = 2A \implies A = \frac{1}{2} \] Thus, \[ C = -\frac{1}{2} \] Finally, we have: \[ C + D = -\frac{1}{2} + \frac{1}{2} = 0 \] ### Final Answer: \[ C + D = 0 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (x^(3)+x^(2)+1)/((x^(2)+2)(x^(2)+3))=(Ax+B)/(x^(2)+2)+(Cx+D)/(x^(2)+3) , then A+B+C+D=

Assertion (A) : If (1)/(x^(3)(x+2))=A/x + B/x^(2) +C/x^(3) + D/(x+2) then A = 1/8, B= -1/4, C = 1/2, D= -1/8 Reason (R) : (1)/(x^(3)(x+a))=(1)/(a^(3)x)-(1)/(a^(2)x^(2))+(1)/(ax^(3))-(1)/(a^(3)(x+a))

Resolve into Partial Fractions If (1)/(x^(3)(x+3))=(1)/(Ax) - (1)/(Bx^(2))+(1)/(Cx^(3))-(1)/(D(x+3)) then find the values of A, B, C and D.

The expression (1)/(1+(x)/(1-(x)/(x+2)))div ((1)/(1-x)+(1)/(1+x))/((1)/(1-x)-(1)/(1+x)) (a) (2x)/(x^(2)+2x+2) (b) (2x)/(x^(2)-1) (c) 1 (d) x^(2)-1

(2x^(4)+3x^(2)+1)/((x^(2)+1)^(4))=(A)/((x^(2)+1))+(B)/((x^(2)+1^(2)))+(C)/((x^(2)+1)^(3))+(D)/((x^(2)+1)^(4)) then Match the following. {:(" List - I"," List - II"),("1) A","(a) 2"),("2) B","(b) 1"),("3) C","(c) -1"),("4) D","(d) 0"), (,"(e) 1/2"):}

If (2x^(3)+1)/((x-1)(x+1)(x+2))=A+(B)/(x-1)+(C)/(x+1)+(D)/(x+2) , then find the value of A+B+C+D .

(3x^(2)+x+1)/((x-1)^(4))=(A)/(x-1)+(B)/((x-1)^(2))+(C)/((x-1)^(3))+(D)/((x-1)^(4)) then A+B-C+D=

If int (dx)/(x ^(4) (1+x^(3))^2)=a ln |(1+x ^(3))/(x ^(3))| +(b)/(x ^(3)) +(c)/(1+ x^(2)) +d. then (where d is arbitrary constant)

The value of tan{1/2 sin^-1 ((2x)/(1+x^2))+1/2 cos^-1 ((1-x^2)/(1+x^2))} is (A) (2x)/(1-x^2) (B) (2x)/(1-x^2) (C) not defined if x.>=1 (D) 0

If (x^(4))/((x-1)(x-2)(x-3))= A.x+B. (1)/((x-1))+C (1)/((x-2))+D. (1)/((x-3))+E , then A+B+C+D+E=