Home
Class 12
MATHS
If (3x+4)/(x^(2)-3x+2)=A/(x-2)-B/(x-1) t...

If `(3x+4)/(x^(2)-3x+2)=A/(x-2)-B/(x-1)` then (A, B) =

A

(7, 10)

B

(10, 7)

C

(10, -7)

D

(-10, 7)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{3x + 4}{x^2 - 3x + 2} = \frac{A}{x - 2} - \frac{B}{x - 1}\), we will follow these steps: ### Step 1: Factor the Denominator First, we need to factor the denominator \(x^2 - 3x + 2\). \[ x^2 - 3x + 2 = (x - 1)(x - 2) \] So, we rewrite the equation as: \[ \frac{3x + 4}{(x - 1)(x - 2)} = \frac{A}{x - 2} - \frac{B}{x - 1} \] ### Step 2: Combine the Right Side Next, we will combine the right side over a common denominator: \[ \frac{A}{x - 2} - \frac{B}{x - 1} = \frac{A(x - 1) - B(x - 2)}{(x - 2)(x - 1)} \] This gives us: \[ \frac{3x + 4}{(x - 1)(x - 2)} = \frac{A(x - 1) - B(x - 2)}{(x - 2)(x - 1)} \] ### Step 3: Set the Numerators Equal Since the denominators are equal, we can set the numerators equal: \[ 3x + 4 = A(x - 1) - B(x - 2) \] ### Step 4: Expand the Right Side Now we will expand the right side: \[ 3x + 4 = Ax - A - Bx + 2B \] Combining like terms gives: \[ 3x + 4 = (A - B)x + (2B - A) \] ### Step 5: Compare Coefficients Now we compare the coefficients of \(x\) and the constant terms: 1. Coefficient of \(x\): \(3 = A - B\) (Equation 1) 2. Constant term: \(4 = 2B - A\) (Equation 2) ### Step 6: Solve the System of Equations From Equation 1, we can express \(A\) in terms of \(B\): \[ A = B + 3 \] Now substitute \(A\) in Equation 2: \[ 4 = 2B - (B + 3) \] Simplifying this gives: \[ 4 = 2B - B - 3 \implies 4 = B - 3 \implies B = 7 \] ### Step 7: Find \(A\) Now substitute \(B\) back into the equation for \(A\): \[ A = 7 + 3 = 10 \] ### Final Result Thus, the values of \(A\) and \(B\) are: \[ (A, B) = (10, 7) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (x^(2)+1)/((x^(2)+2)(x^(2)+3))=(A)/(x^(2)+3)+(B)/(x^(2)+2) then (A, B)=

If (x^(4))/((x-1)(x-2))=x^(2)+3x+7+(A)/(x-2)+(B)/(x-1) then A=

If (3x+2)/((x+1)(2x^(2)+3))=(A)/(x+1)-(Bx+C)/(2x^(2)+3) , then A+B-C=

If f(x)=(x^(2)+3x+2)(x^(2)-7x+a) and g(x)=(x^(2)-x-12)(x^(2)+5x+b) , then the value of a and b , if (x+1)(x-4) is H.C.F. of f(x) and g(x) is (a) a=10 : b=6 (b) a=4 : b=12 (c) a=12 : b=4 (d) a=6 : b=10

If (x^(4))/((x-1)(x-2)(x-3))= A.x+B. (1)/((x-1))+C (1)/((x-2))+D. (1)/((x-3))+E , then A+B+C+D+E=

If (x^(2)-5x+7)/(x-1)^(3)=A/(x-1)+B/(x-1)^(2)+C/(x-1)^(3) " then " A+B-C=

If : int(2x^(2)+3)/((x^(2)-1)(x^(2)-4))dx=log[((x-2)/(x+))^(a).((x+1)/(x-1))^(b)]+c then : (a, b)-=

(3x^(2)+x+1)/((x-1)^(4))=(A)/(x-1)+(B)/((x-1)^(2))+(C)/((x-1)^(3))+(D)/((x-1)^(4)) then A+B-C+D=

x^(3)/((2x-1)(x+2)(x-3))=A+B/(2x-1)+C/(x+2)+D/(x-3) rArr A =

If x^(xsqrt(x))=(x sqrt(x))^(x) ,then x=? (A) 1/2 (B) 3/4 (c) 9/4 (D) 3/2