Home
Class 12
MATHS
If (1-x+6x^(2))/(x-x^(3))=A/x +(B)/(1-x...

If `(1-x+6x^(2))/(x-x^(3))=A/x +(B)/(1-x)+(C)/(1+x)`, then `A=`

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{1 - x + 6x^2}{x - x^3} = \frac{A}{x} + \frac{B}{1 - x} + \frac{C}{1 + x} \] we need to find the value of \( A \). ### Step 1: Factor the denominator on the left side The denominator \( x - x^3 \) can be factored as: \[ x(1 - x)(1 + x) \] So we rewrite the left side: \[ \frac{1 - x + 6x^2}{x(1 - x)(1 + x)} \] ### Step 2: Set up the equation Now, we can equate the two sides: \[ \frac{1 - x + 6x^2}{x(1 - x)(1 + x)} = \frac{A(1 - x)(1 + x) + Bx(1 + x) + Cx(1 - x)}{x(1 - x)(1 + x)} \] ### Step 3: Clear the denominators Since the denominators are the same, we can focus on the numerators: \[ 1 - x + 6x^2 = A(1 - x)(1 + x) + Bx(1 + x) + Cx(1 - x) \] ### Step 4: Expand the right side Now, we expand the right side: 1. \( A(1 - x)(1 + x) = A(1 - x^2) = A - Ax^2 \) 2. \( Bx(1 + x) = Bx + Bx^2 \) 3. \( Cx(1 - x) = Cx - Cx^2 \) Combining these gives: \[ A - Ax^2 + Bx + Bx^2 + Cx - Cx^2 = A + (B + C)x + (-A + B - C)x^2 \] ### Step 5: Combine like terms Now we can combine like terms: \[ 1 - x + 6x^2 = A + (B + C)x + (-A + B - C)x^2 \] ### Step 6: Equate coefficients Now we equate coefficients from both sides: 1. Constant term: \( A = 1 \) 2. Coefficient of \( x \): \( B + C = -1 \) 3. Coefficient of \( x^2 \): \( -A + B - C = 6 \) ### Step 7: Solve for \( A \) From the first equation, we already have: \[ A = 1 \] ### Conclusion Thus, the value of \( A \) is: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (1)/((1+2x)(1-x^(2)))=(A)/(1+2x)+(B)/(1+x)+(C)/(1-x) then assending order of A, B, C.

If (x)/((1+x^(2))(3-2x))=(A)/(3-2x)+(Bx+C)/(1+x^(2)) then C=

Observe the following Lists ul("List - I") A) If (3x)/((x-a)(x-b))=(2)/(x-a)+(1)/(x-b) then a:b is B) If (x+4)/((x^(2)-4)(x+1))=(A)/(x-2)+(B)/(x+2)+(C)/(x+1) then A+B+C is C) If (2x+1)/((x-1)(x^(2)+1))=(A)/(x-1)+(Bx+C)/(x^(2)+1) then C= ul("List - II") 1) Slope of x -axis 2) sin. (3 pi)/(2) 3) {:(" "Lt),(x rarr 0):} (Tan x-Sinx)/(x^(3)) 4) Slope of the line 6x+3y-7=0 The correct match is

Observe the following Lists ul("List - I") A) If (3x)/((x-a)(x-b))=(2)/(x-a)+(1)/(x-b) then a:b is B) If (x+4)/((x^(2)-4)(x+1))=(A)/(x-2)+(B)/(x+2)+(C)/(x+1) then A+B+C is C) If (2x+1)/((x-1)(x^(2)+1))=(A)/(x-1)+(Bx+C)/(x^(2)+1) then C= ul("List - II") 1) Slope of x -axis 2) sin. (3 pi)/(2) 3) {:(" "Lt),(x rarr 0):} (Tan x-Sinx)/(x^(3)) 4) Slope of the line 6x+3y-7=0 The correct match is

If (x^(2)+x+2)/(x^(2)+2x+1)=A+(B)/(x+1)+(C)/((x+1)^(2)) , then find the value of A+B+C .

If (1)/((1-2x)^(2)(1-3x))=(A)/(1-2x)+(B)/((1-2x)^(2))+(C)/(1-3x) then match the following {:(" List - I"," List - II"),("I) A","(a) 9"),("II) B","(b) -6"),("III) C","(c) -2"):}

If (2x^(2)+5)/((x+1)^(2)(x-3))=(A)/(x+1)+(B)/((x+1)^(2))+(C)/(x-3) then A=

If (x^(2)-5x+7)/(x-1)^(3)=A/(x-1)+B/(x-1)^(2)+C/(x-1)^(3) " then " A+B-C=

If (x^(3))/((x-a)(x-b)(x-c))=1 +(A)/(x-a)+(B)/(x-b)+(C)/(x-c) then A=

If (3x+2)/((x+1)(2x^(2)+3))=(A)/(x+1)-(Bx+C)/(2x^(2)+3) , then A+B-C=