Home
Class 12
MATHS
If (x+1)/((x-a)(x-3))=2/(x-a)+b/(x-3), "...

If `(x+1)/((x-a)(x-3))=2/(x-a)+b/(x-3), " then "(a, b)=`

A

(7, -1)

B

(-4, 1)

C

(4, 1)

D

(-4, -1)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{x+1}{(x-a)(x-3)} = \frac{2}{x-a} + \frac{b}{x-3}\), we will follow these steps: ### Step 1: Write the equation We start with the given equation: \[ \frac{x+1}{(x-a)(x-3)} = \frac{2}{x-a} + \frac{b}{x-3} \] ### Step 2: Find a common denominator The common denominator for the right-hand side is \((x-a)(x-3)\). We rewrite the right side: \[ \frac{2(x-3) + b(x-a)}{(x-a)(x-3)} \] So, we have: \[ \frac{x+1}{(x-a)(x-3)} = \frac{2(x-3) + b(x-a)}{(x-a)(x-3)} \] ### Step 3: Cross-multiply Since the denominators are the same, we can equate the numerators: \[ x + 1 = 2(x - 3) + b(x - a) \] ### Step 4: Expand the right-hand side Expanding the right side gives: \[ x + 1 = 2x - 6 + bx - ab \] ### Step 5: Rearrange the equation Rearranging the equation, we get: \[ x + 1 = (2 + b)x - (6 + ab) \] ### Step 6: Compare coefficients Now, we compare the coefficients of \(x\) and the constant terms on both sides: 1. Coefficient of \(x\): \[ 1 = 2 + b \implies b = 1 - 2 = -1 \] 2. Constant terms: \[ 1 = -6 - ab \] Substituting \(b = -1\): \[ 1 = -6 - a(-1) \implies 1 = -6 + a \implies a = 1 + 6 = 7 \] ### Step 7: Final result Thus, we find: \[ (a, b) = (7, -1) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

A : If (5x+1)/((x+2)(x-1))=A/(X+2)+B/(x-1) " then "A=3, B=2 . R : (px+q)/((x-a)(x-b))=(pa+q)/((x-a)(a-b))+(pb+q)/((b-a)(x-b)) .

If (3x+4)/(x^(2)-3x+2)=A/(x-2)-B/(x-1) then (A, B) =

If (x^(2)-5x+7)/(x-1)^(3)=A/(x-1)+B/(x-1)^(2)+C/(x-1)^(3) " then " A+B-C=

If (x^(4))/((x-1)(x-2))=x^(2)+3x+7+(A)/(x-2)+(B)/(x-1) then A=

If (x^(3))/((x-a)(x-b)(x-c))=1 +(A)/(x-a)+(B)/(x-b)+(C)/(x-c) then A=

If |1 1 1a b c a^3b^2c^3|=(a-b)(b-c)(c-a)(a+b+c),w h e r ea ,b ,c are different, then the determinant |1 1 1(x-a)^2(x-b)^2(x-c)^2(x-b)(x-c)(x-c)(x-a)(x-a)(x-b)| vanishes when a. a+b+c=0 b. x=1/3(a+b+c) c. x=1/2(a+b+c) d. x=a+b+c

Let a and b be the number of solutions and sum of solutions of (2x)/(x-1)-|x|=(x^2)/(|x-1|) respectively, then a=3 (b) b=1 (c) b=2 (d) a=2

x^(3)/((2x-1)(x+2)(x-3))=A+B/(2x-1)+C/(x+2)+D/(x-3) rArr A =

If (x^(4))/((x-1)(x-2)(x-3))= A.x+B. (1)/((x-1))+C (1)/((x-2))+D. (1)/((x-3))+E , then A+B+C+D+E=

If (3x+2)/((x+1)(2x^(2)+3))=(A)/(x+1)-(Bx+C)/(2x^(2)+3) , then A+B-C=