Home
Class 12
MATHS
If (x^(2)-10x+13)/((x-1)(x^(2)-5x+6))=A/...

If `(x^(2)-10x+13)/((x-1)(x^(2)-5x+6))=A/(x-1)+B/(x-2)+C/(x-3)`, then C =

A

-1

B

-2

C

-3

D

-4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{x^2 - 10x + 13}{(x-1)(x^2 - 5x + 6)} = \frac{A}{x-1} + \frac{B}{x-2} + \frac{C}{x-3}, \] we need to find the value of \(C\). ### Step 1: Factor the denominator The denominator can be factored as follows: \[ x^2 - 5x + 6 = (x-2)(x-3). \] Thus, we can rewrite the equation as: \[ \frac{x^2 - 10x + 13}{(x-1)(x-2)(x-3)} = \frac{A}{x-1} + \frac{B}{x-2} + \frac{C}{x-3}. \] ### Step 2: Combine the right-hand side To combine the right-hand side, we need a common denominator: \[ \frac{A(x-2)(x-3) + B(x-1)(x-3) + C(x-1)(x-2)}{(x-1)(x-2)(x-3)}. \] ### Step 3: Set the numerators equal Now we equate the numerators: \[ x^2 - 10x + 13 = A(x-2)(x-3) + B(x-1)(x-3) + C(x-1)(x-2). \] ### Step 4: Expand the right-hand side Expanding each term: 1. \(A(x-2)(x-3) = A(x^2 - 5x + 6)\) 2. \(B(x-1)(x-3) = B(x^2 - 4x + 3)\) 3. \(C(x-1)(x-2) = C(x^2 - 3x + 2)\) Combining these gives: \[ (A + B + C)x^2 + (-5A - 4B - 3C)x + (6A + 3B + 2C). \] ### Step 5: Set up equations from coefficients Now, we can set up a system of equations based on the coefficients: 1. \(A + B + C = 1\) (coefficient of \(x^2\)) 2. \(-5A - 4B - 3C = -10\) (coefficient of \(x\)) 3. \(6A + 3B + 2C = 13\) (constant term) ### Step 6: Solve the system of equations From equation (1): \[ C = 1 - A - B. \] Substituting \(C\) into equations (2) and (3): 1. \(-5A - 4B - 3(1 - A - B) = -10\) \[ -5A - 4B - 3 + 3A + 3B = -10 \implies -2A - B = -7 \implies 2A + B = 7 \quad \text{(Equation 4)} \] 2. \(6A + 3B + 2(1 - A - B) = 13\) \[ 6A + 3B + 2 - 2A - 2B = 13 \implies 4A + B = 11 \quad \text{(Equation 5)} \] Now we have: - Equation 4: \(2A + B = 7\) - Equation 5: \(4A + B = 11\) ### Step 7: Subtract the equations Subtract Equation 4 from Equation 5: \[ (4A + B) - (2A + B) = 11 - 7 \implies 2A = 4 \implies A = 2. \] ### Step 8: Substitute back to find \(B\) Substituting \(A = 2\) into Equation 4: \[ 2(2) + B = 7 \implies 4 + B = 7 \implies B = 3. \] ### Step 9: Find \(C\) Now substitute \(A\) and \(B\) back into the expression for \(C\): \[ C = 1 - A - B = 1 - 2 - 3 = -4. \] ### Final Answer Thus, the value of \(C\) is \[ \boxed{-4}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (x^(2)-10x+13)/((x-1)(x^(2)-5x+6))=(A)/(x-1)+(B)/(x-2)+(C)/(x-3) then write the values of A, B, C in ascending order.

If (x^(2)-5x+7)/(x-1)^(3)=A/(x-1)+B/(x-1)^(2)+C/(x-1)^(3) " then " A+B-C=

If (2x^(2)+5)/((x+1)^(2)(x-3))=(A)/(x+1)+(B)/((x+1)^(2))+(C)/(x-3) then A=

x^(3)/((2x-1)(x+2)(x-3))=A+B/(2x-1)+C/(x+2)+D/(x-3) rArr A =

If (3x+2)/((x+1)(2x^(2)+3))=(A)/(x+1)-(Bx+C)/(2x^(2)+3) , then A+B-C=

If (2x^(3)+1)/((x-1)(x+1)(x+2))=A+(B)/(x-1)+(C)/(x+1)+(D)/(x+2) , then find the value of A+B+C+D .

If (x)/((1+x^(2))(3-2x))=(A)/(3-2x)+(Bx+C)/(1+x^(2)) then C=

If (1-x+6x^(2))/(x-x^(3))=A/x +(B)/(1-x)+(C)/(1+x) , then A=

If (x^(4))/((x-1)(x-2)(x-3))= A.x+B. (1)/((x-1))+C (1)/((x-2))+D. (1)/((x-3))+E , then A+B+C+D+E=

(3x^(2)+x+1)/((x-1)^(4))=(A)/(x-1)+(B)/((x-1)^(2))+(C)/((x-1)^(3))+(D)/((x-1)^(4)) then A+B-C+D=