Home
Class 12
MATHS
If (x^(4))/((x-1)(x-2))=x^(2)+3x+7+(A)/(...

If `(x^(4))/((x-1)(x-2))=x^(2)+3x+7+(A)/(x-2)+(B)/(x-1)` then `A=`

A

7

B

16

C

-7

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{x^4}{(x-1)(x-2)} = x^2 + 3x + 7 + \frac{A}{x-2} + \frac{B}{x-1} \] we need to find the value of \( A \). ### Step 1: Rewrite the equation First, we can rewrite the right-hand side with a common denominator: \[ x^2 + 3x + 7 + \frac{A}{x-2} + \frac{B}{x-1} = \frac{(x^2 + 3x + 7)(x-2)(x-1) + A(x-1) + B(x-2)}{(x-1)(x-2)} \] ### Step 2: Clear the denominators Now, we can multiply both sides by \((x-1)(x-2)\) to eliminate the denominators: \[ x^4 = (x^2 + 3x + 7)(x-2)(x-1) + A(x-1) + B(x-2) \] ### Step 3: Expand the right-hand side Next, we need to expand the right-hand side. Start with \((x^2 + 3x + 7)(x-2)(x-1)\): 1. First, expand \((x-2)(x-1)\): \[ (x-2)(x-1) = x^2 - 3x + 2 \] 2. Now, multiply this result by \((x^2 + 3x + 7)\): \[ (x^2 + 3x + 7)(x^2 - 3x + 2) \] Expanding this gives: \[ x^4 + 3x^3 + 7x^2 - 3x^3 - 9x^2 - 21x + 2x^2 + 6x + 14 \] Combining like terms results in: \[ x^4 + (3x^3 - 3x^3) + (7x^2 - 9x^2 + 2x^2) + (-21x + 6x) + 14 = x^4 + 0x^3 + 0x^2 - 15x + 14 \] So we have: \[ x^4 = x^4 - 15x + 14 + A(x-1) + B(x-2) \] ### Step 4: Substitute values to find A To find \( A \), we can substitute \( x = 2 \): \[ 2^4 = 2^4 - 15(2) + 14 + A(2-1) + B(2-2) \] This simplifies to: \[ 16 = 16 - 30 + 14 + A(1) + 0 \] Thus: \[ 16 = 0 + A \] So, we find: \[ A = 16 \] ### Final Answer The value of \( A \) is: \[ \boxed{16} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (x^(4))/((x-1)(x-2)(x-3))= A.x+B. (1)/((x-1))+C (1)/((x-2))+D. (1)/((x-3))+E , then A+B+C+D+E=

If (3x+4)/(x^(2)-3x+2)=A/(x-2)-B/(x-1) then (A, B) =

If (x^(2)-5x+7)/(x-1)^(3)=A/(x-1)+B/(x-1)^(2)+C/(x-1)^(3) " then " A+B-C=

The equation (2x^(2))/(x-1)-(2x +7)/(3) +(4-6x)/(x-1) +1=0 has the roots-

x^(3)/((2x-1)(x+2)(x-3))=A+B/(2x-1)+C/(x+2)+D/(x-3) rArr A =

(3x^(2)+x+1)/((x-1)^(4))=(A)/(x-1)+(B)/((x-1)^(2))+(C)/((x-1)^(3))+(D)/((x-1)^(4)) then A+B-C+D=

(3x^(2)+x+1)/(x-1)^(4)=a/(x-1)+b/(x-1)^(2)+c/(x-1)^(3)+d/(x-1)^(4) rArr [{:(a,b), (c, d):}]=

If f(x)=2/(x-3),g(x)=(x-3)/(x+4) , and h(x)=-(2(2x+1))/(x^2+x-12) then lim_(x->3)[f(x)+g(x)+h(x)] is (a) -2 (b) -1 (c) -2/7 (d) 0

((x+1))/((2x-1)(3x+1))=A/((2x-1))+B/((3x+1)) rArr 16A+9B=

If : int(2x^(2)+3)/((x^(2)-1)(x^(2)-4))dx=log[((x-2)/(x+))^(a).((x+1)/(x-1))^(b)]+c then : (a, b)-=