Home
Class 12
MATHS
If (x^(2)+1)/((x^(2)+2)(x^(2)+3))=(A)/(x...

If `(x^(2)+1)/((x^(2)+2)(x^(2)+3))=(A)/(x^(2)+3)+(B)/(x^(2)+2)` then `(A, B)=`

A

(1, 2)

B

(2, -1)

C

(1, -2)

D

(-2, -1)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{x^2 + 1}{(x^2 + 2)(x^2 + 3)} = \frac{A}{x^2 + 3} + \frac{B}{x^2 + 2} \] we will find the values of \(A\) and \(B\). ### Step 1: Combine the right-hand side into a single fraction We start by finding a common denominator for the right-hand side: \[ \frac{A}{x^2 + 3} + \frac{B}{x^2 + 2} = \frac{A(x^2 + 2) + B(x^2 + 3)}{(x^2 + 3)(x^2 + 2)} \] ### Step 2: Set the numerators equal Now we can set the numerators equal to each other since the denominators are the same: \[ x^2 + 1 = A(x^2 + 2) + B(x^2 + 3) \] ### Step 3: Expand the right-hand side Expanding the right-hand side gives: \[ x^2 + 1 = Ax^2 + 2A + Bx^2 + 3B \] Combining like terms, we have: \[ x^2 + 1 = (A + B)x^2 + (2A + 3B) \] ### Step 4: Compare coefficients Now we can compare coefficients from both sides of the equation. 1. Coefficient of \(x^2\): \[ 1 = A + B \quad \text{(1)} \] 2. Constant term: \[ 1 = 2A + 3B \quad \text{(2)} \] ### Step 5: Solve the system of equations Now we have a system of two equations: 1. \(A + B = 1\) 2. \(2A + 3B = 1\) From equation (1), we can express \(A\) in terms of \(B\): \[ A = 1 - B \] Substituting \(A\) into equation (2): \[ 2(1 - B) + 3B = 1 \] Expanding this gives: \[ 2 - 2B + 3B = 1 \] Combining like terms results in: \[ 2 + B = 1 \] ### Step 6: Solve for \(B\) Now, we can isolate \(B\): \[ B = 1 - 2 = -1 \] ### Step 7: Substitute back to find \(A\) Now substituting \(B = -1\) back into equation (1): \[ A + (-1) = 1 \implies A = 1 + 1 = 2 \] ### Final Result Thus, the values of \(A\) and \(B\) are: \[ (A, B) = (2, -1) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (x^(3)+x^(2)+1)/((x^(2)+2)(x^(2)+3))=(Ax+B)/(x^(2)+2)+(Cx+D)/(x^(2)+3) , then A+B+C+D=

If (3x+2)/((x+1)(2x^(2)+3))=(A)/(x+1)-(Bx+C)/(2x^(2)+3) , then A+B-C=

If (2x^(2)+5)/((x+1)^(2)(x-3))=(A)/(x+1)+(B)/((x+1)^(2))+(C)/(x-3) then A=

If (x^(4))/((x-1)(x-2))=x^(2)+3x+7+(A)/(x-2)+(B)/(x-1) then A=

If (3x+4)/(x^(2)-3x+2)=A/(x-2)-B/(x-1) then (A, B) =

a : If 1/((x-2)(x^(2)+1))=A/(x-2)+(Bx+C)/(x^(2)+1) " then "A=1/5, B=-1/5, C=-2/5 . R : 1/((x-a)(x^(2)+b))=1/(a^(2)+b)[1/(x-a)-(x+a)/(x^(2)+b)]

If (x^(4)+24x^(2)+28)/((x^(2)+1)^(3))=A/((x^(2)+1))+B/((x^(2)+1)^(2))+C/((x^(2)+1)^(3)) , then A + C =

int(2x^(2)+3)/((x^(2)-1)(x^(2)+4))dx=alog((x+1)/(x-1))+b"tan"^(-1)(x)/(2) , then (a,b) is

If (x^(2)-5x+7)/(x-1)^(3)=A/(x-1)+B/(x-1)^(2)+C/(x-1)^(3) " then " A+B-C=

If : int(2x^(2)+3)/((x^(2)-1)(x^(2)-4))dx=log[((x-2)/(x+))^(a).((x+1)/(x-1))^(b)]+c then : (a, b)-=