Home
Class 12
MATHS
If (x^(2)+x+1)/(x^(2)+2x+1)=A+B/(x+1)+C/...

If `(x^(2)+x+1)/(x^(2)+2x+1)=A+B/(x+1)+C/(x+1)^(2)` then A - B =

A

4C

B

2C

C

3C

D

`4C+1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{x^2 + x + 1}{x^2 + 2x + 1} = A + \frac{B}{x+1} + \frac{C}{(x+1)^2}\), we will follow these steps: ### Step 1: Rewrite the right-hand side with a common denominator The right-hand side can be expressed with a common denominator of \((x + 1)^2\): \[ A + \frac{B}{x+1} + \frac{C}{(x+1)^2} = \frac{A(x + 1)^2 + B(x + 1) + C}{(x + 1)^2} \] ### Step 2: Set the left-hand side equal to the right-hand side Now we can equate the left-hand side to the right-hand side: \[ \frac{x^2 + x + 1}{(x + 1)^2} = \frac{A(x + 1)^2 + B(x + 1) + C}{(x + 1)^2} \] Since the denominators are the same, we can equate the numerators: \[ x^2 + x + 1 = A(x + 1)^2 + B(x + 1) + C \] ### Step 3: Expand the right-hand side Now, we will expand the right-hand side: \[ A(x + 1)^2 = A(x^2 + 2x + 1) = Ax^2 + 2Ax + A \] \[ B(x + 1) = Bx + B \] Combining these, we have: \[ Ax^2 + (2A + B)x + (A + B + C) \] ### Step 4: Equate coefficients Now we can equate the coefficients from both sides of the equation: 1. Coefficient of \(x^2\): \(A = 1\) 2. Coefficient of \(x\): \(2A + B = 1\) 3. Constant term: \(A + B + C = 1\) ### Step 5: Solve for \(A\), \(B\), and \(C\) From the first equation, we have: \[ A = 1 \] Substituting \(A = 1\) into the second equation: \[ 2(1) + B = 1 \implies 2 + B = 1 \implies B = 1 - 2 = -1 \] Now substituting \(A = 1\) and \(B = -1\) into the third equation: \[ 1 - 1 + C = 1 \implies C = 1 \] ### Step 6: Find \(A - B\) Now that we have \(A\) and \(B\): \[ A - B = 1 - (-1) = 1 + 1 = 2 \] ### Final Answer Thus, \(A - B = 2\). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Statement-I : If (x^(2)+3x+1)/(x^(2)+2x+1)=A+(B)/(x+1)+(C)/((x+1)^(2)) , then A+B+C=0 Statement-II: If (x^(2)+2x+3)/(x^(3))=A/x + (B)/(x^(2))+(C)/(x^(3)) , then A+B-C=0 Which of the above statements is true

If (x^(2)+x+2)/(x^(2)+2x+1)=A+(B)/(x+1)+(C)/((x+1)^(2)) , then find the value of A+B+C .

If (x^(2)-5x+7)/(x-1)^(3)=A/(x-1)+B/(x-1)^(2)+C/(x-1)^(3) " then " A+B-C=

If (1-x+6x^(2))/(x-x^(3))=A/x +(B)/(1-x)+(C)/(1+x) , then A=

a : If 1/((x-2)(x^(2)+1))=A/(x-2)+(Bx+C)/(x^(2)+1) " then "A=1/5, B=-1/5, C=-2/5 . R : 1/((x-a)(x^(2)+b))=1/(a^(2)+b)[1/(x-a)-(x+a)/(x^(2)+b)]

If (3x+2)/((x+1)(2x^(2)+3))=(A)/(x+1)-(Bx+C)/(2x^(2)+3) , then A+B-C=

If (x^(4)+24x^(2)+28)/((x^(2)+1)^(3))=A/((x^(2)+1))+B/((x^(2)+1)^(2))+C/((x^(2)+1)^(3)) , then A + C =

If int (x^4 + 1)/(x(x^2+1)^2)\ dx = A ln |x| +B/(1+x^2)+C, then A+B equals to :

If (x^(4))/((x-1)(x-2))=x^(2)+3x+7+(A)/(x-2)+(B)/(x-1) then A=

If (2x^(2)+5)/((x+1)^(2)(x-3))=(A)/(x+1)+(B)/((x+1)^(2))+(C)/(x-3) then A=