Home
Class 12
MATHS
If (x^(2)-5x+7)/(x-1)^(3)=A/(x-1)+B/(x-1...

If `(x^(2)-5x+7)/(x-1)^(3)=A/(x-1)+B/(x-1)^(2)+C/(x-1)^(3) " then " A+B-C=`

A

5

B

3

C

0

D

-5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{x^2 - 5x + 7}{(x - 1)^3} = \frac{A}{x - 1} + \frac{B}{(x - 1)^2} + \frac{C}{(x - 1)^3} \] we will follow these steps: ### Step 1: Combine the Right Side First, we need to combine the right-hand side into a single fraction. The common denominator is \((x - 1)^3\): \[ \frac{A}{x - 1} + \frac{B}{(x - 1)^2} + \frac{C}{(x - 1)^3} = \frac{A(x - 1)^2 + B(x - 1) + C}{(x - 1)^3} \] ### Step 2: Set the Numerators Equal Now that we have a common denominator, we can set the numerators equal to each other: \[ x^2 - 5x + 7 = A(x - 1)^2 + B(x - 1) + C \] ### Step 3: Expand the Right Side Next, we expand the right-hand side: \[ A(x - 1)^2 = A(x^2 - 2x + 1) = Ax^2 - 2Ax + A \] \[ B(x - 1) = Bx - B \] Combining these gives: \[ Ax^2 - 2Ax + A + Bx - B + C = Ax^2 + (-2A + B)x + (A - B + C) \] ### Step 4: Compare Coefficients Now we equate the coefficients from both sides of the equation: 1. Coefficient of \(x^2\): \[ A = 1 \] 2. Coefficient of \(x\): \[ -2A + B = -5 \] 3. Constant term: \[ A - B + C = 7 \] ### Step 5: Solve for A, B, and C From \(A = 1\), we substitute into the second equation: \[ -2(1) + B = -5 \implies -2 + B = -5 \implies B = -3 \] Now substitute \(A\) and \(B\) into the third equation: \[ 1 - (-3) + C = 7 \implies 1 + 3 + C = 7 \implies C = 7 - 4 = 3 \] ### Step 6: Calculate A + B - C Now we have: - \(A = 1\) - \(B = -3\) - \(C = 3\) We need to find \(A + B - C\): \[ A + B - C = 1 - 3 - 3 = 1 - 6 = -5 \] ### Final Answer Thus, the value of \(A + B - C\) is: \[ \boxed{-5} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (x^(2)-10x+13)/((x-1)(x^(2)-5x+6))=A/(x-1)+B/(x-2)+C/(x-3) , then C =

If (2x^(2)+5)/((x+1)^(2)(x-3))=(A)/(x+1)+(B)/((x+1)^(2))+(C)/(x-3) then A=

Statement-I : If (x^(2)+3x+1)/(x^(2)+2x+1)=A+(B)/(x+1)+(C)/((x+1)^(2)) , then A+B+C=0 Statement-II: If (x^(2)+2x+3)/(x^(3))=A/x + (B)/(x^(2))+(C)/(x^(3)) , then A+B-C=0 Which of the above statements is true

If (x^(2)-10x+13)/((x-1)(x^(2)-5x+6))=(A)/(x-1)+(B)/(x-2)+(C)/(x-3) then write the values of A, B, C in ascending order.

(3x^(2)+x+1)/((x-1)^(4))=(A)/(x-1)+(B)/((x-1)^(2))+(C)/((x-1)^(3))+(D)/((x-1)^(4)) then A+B-C+D=

If (x^(4)+24x^(2)+28)/((x^(2)+1)^(3))=A/((x^(2)+1))+B/((x^(2)+1)^(2))+C/((x^(2)+1)^(3)) , then A + C =

(3x^(2)+x+1)/(x-1)^(4)=a/(x-1)+b/(x-1)^(2)+c/(x-1)^(3)+d/(x-1)^(4) rArr [{:(a,b), (c, d):}]=

If (x^(3))/((x-a)(x-b)(x-c))=1 +(A)/(x-a)+(B)/(x-b)+(C)/(x-c) then A=

If (1-x+6x^(2))/(x-x^(3))=A/x +(B)/(1-x)+(C)/(1+x) , then A=

If (x^(2)+x+2)/(x^(2)+2x+1)=A+(B)/(x+1)+(C)/((x+1)^(2)) , then find the value of A+B+C .