Home
Class 12
MATHS
If (x^(4))/((x-1)(x-2)(x-3))= A.x+B. (1)...

If `(x^(4))/((x-1)(x-2)(x-3))= A.x+B. (1)/((x-1))+C (1)/((x-2))+D. (1)/((x-3))+E`, then `A+B+C+D+E=`

A

-12

B

6

C

18

D

32

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{x^4}{(x-1)(x-2)(x-3)} = A \cdot x + \frac{B}{(x-1)} + \frac{C}{(x-2)} + \frac{D}{(x-3)} + E, \] we need to express the left-hand side as a sum of partial fractions on the right-hand side. Let's break this down step by step. ### Step 1: Rewrite the equation We start by rewriting the right-hand side with a common denominator: \[ A \cdot x + \frac{B}{(x-1)} + \frac{C}{(x-2)} + \frac{D}{(x-3)} + E = \frac{A \cdot x \cdot (x-1)(x-2)(x-3) + B \cdot (x-2)(x-3) + C \cdot (x-1)(x-3) + D \cdot (x-1)(x-2) + E \cdot (x-1)(x-2)(x-3)}{(x-1)(x-2)(x-3)}. \] ### Step 2: Eliminate the denominator By multiplying both sides by \((x-1)(x-2)(x-3)\), we get: \[ x^4 = A \cdot x \cdot (x-1)(x-2)(x-3) + B \cdot (x-2)(x-3) + C \cdot (x-1)(x-3) + D \cdot (x-1)(x-2) + E \cdot (x-1)(x-2)(x-3). \] ### Step 3: Substitute values for x To find the coefficients \(A\), \(B\), \(C\), \(D\), and \(E\), we can substitute specific values for \(x\). 1. **Substituting \(x = 1\)**: \[ 1^4 = A \cdot 1 \cdot 0 + B \cdot (1-2)(1-3) + 0 + 0 + 0. \] This simplifies to: \[ 1 = B \cdot (-1)(-2) \implies 1 = 2B \implies B = \frac{1}{2}. \] 2. **Substituting \(x = 2\)**: \[ 2^4 = A \cdot 2 \cdot 0 + 0 + C \cdot (2-1)(2-3) + 0 + 0. \] This simplifies to: \[ 16 = C \cdot 1 \cdot (-1) \implies 16 = -C \implies C = -16. \] 3. **Substituting \(x = 3\)**: \[ 3^4 = A \cdot 3 \cdot 0 + 0 + 0 + D \cdot (3-1)(3-2) + 0. \] This simplifies to: \[ 81 = D \cdot 2 \cdot 1 \implies 81 = 2D \implies D = \frac{81}{2}. \] ### Step 4: Find \(A\) and \(E\) To find \(A\) and \(E\), we can equate coefficients. The left-hand side is \(x^4\), and we need to find the coefficient of \(x^3\) on the right-hand side. The coefficient of \(x^3\) from the right-hand side is given by: \[ A + B + C + D + E. \] Since \(x^4\) has no \(x^3\) term, we can set the sum of coefficients equal to 0: \[ A + \frac{1}{2} - 16 + \frac{81}{2} + E = 0. \] ### Step 5: Solve for \(A\) and \(E\) We can simplify this equation: \[ A + \frac{1}{2} - 16 + \frac{81}{2} + E = 0 \implies A + E + \frac{1 + 81 - 32}{2} = 0 \implies A + E + \frac{50}{2} = 0 \implies A + E + 25 = 0. \] Thus, \[ A + E = -25. \] ### Step 6: Find \(A + B + C + D + E\) Now we can find \(A + B + C + D + E\): \[ A + \frac{1}{2} - 16 + \frac{81}{2} + E = 0. \] Substituting \(A + E = -25\): \[ -25 + \frac{1}{2} - 16 + \frac{81}{2} = -25 + 40 = 15. \] Thus, \[ A + B + C + D + E = 15. \] ### Final Answer The final result is: \[ A + B + C + D + E = 15. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

x^(3)/((2x-1)(x+2)(x-3))=A+B/(2x-1)+C/(x+2)+D/(x-3) rArr A =

(3x^(2)+x+1)/((x-1)^(4))=(A)/(x-1)+(B)/((x-1)^(2))+(C)/((x-1)^(3))+(D)/((x-1)^(4)) then A+B-C+D=

If (2x^(3)+1)/((x-1)(x+1)(x+2))=A+(B)/(x-1)+(C)/(x+1)+(D)/(x+2) , then find the value of A+B+C+D .

IF ax^3+bx^2+cx+d = |(x^2,(x-1)^2, (x-2)^2) ,((x-1)^2, (x-2)^2, (x-3)^2), ((x-2)^2, (x-3)^2, (x-4)^2)| , then d= (A) 1 (B) -8 (C) 0 (D) none of these

If (x^(3)+x^(2)+1)/((x^(2)+2)(x^(2)+3))=(Ax+B)/(x^(2)+2)+(Cx+D)/(x^(2)+3) , then A+B+C+D=

If (x^(2)-5x+7)/(x-1)^(3)=A/(x-1)+B/(x-1)^(2)+C/(x-1)^(3) " then " A+B-C=

If int (dx)/(x ^(4) (1+x^(3))^2)=a ln |(1+x ^(3))/(x ^(3))| +(b)/(x ^(3)) +(c)/(1+ x^(3)) +d. then (where d is arbitrary constant)

If int (dx)/(x ^(4) (1+x^(3))^2)=a ln |(1+x ^(3))/(x ^(3))| +(b)/(x ^(3)) +(c)/(1+ x^(2)) +d. then (where d is arbitrary constant)

(3x^(2)+x+1)/(x-1)^(4)=a/(x-1)+b/(x-1)^(2)+c/(x-1)^(3)+d/(x-1)^(4) rArr [{:(a,b), (c, d):}]=

If 1/(x^(4)+x^(2)+1)=(Ax+B)/(x^(2)+x+1)+(Cx+D)/(x^(2)-x+1) " then "C+D=