Home
Class 12
MATHS
If ((x+1)^(2))/(x(x^(2)+1))=(A)/(x)+(Bx+...

If `((x+1)^(2))/(x(x^(2)+1))=(A)/(x)+(Bx+C)/(x^(2)+1)` then `cos^(-1)(A/C)=`

A

`pi/6`

B

`pi/4`

C

`pi/3`

D

`pi/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the equation given in the question: \[ \frac{(x+1)^2}{x(x^2+1)} = \frac{A}{x} + \frac{Bx+C}{x^2+1} \] ### Step 1: Rewrite the Left Side First, we simplify the left-hand side: \[ \frac{(x+1)^2}{x(x^2+1)} = \frac{x^2 + 2x + 1}{x(x^2 + 1)} \] ### Step 2: Combine the Right Side Next, we need to combine the right-hand side into a single fraction: \[ \frac{A}{x} + \frac{Bx+C}{x^2+1} = \frac{A(x^2 + 1) + (Bx + C)x}{x(x^2 + 1)} \] ### Step 3: Expand the Right Side Now, we expand the numerator on the right side: \[ A(x^2 + 1) + (Bx + C)x = Ax^2 + A + Bx^2 + Cx = (A + B)x^2 + Cx + A \] ### Step 4: Set the Numerators Equal Now we set the numerators of both sides equal to each other: \[ x^2 + 2x + 1 = (A + B)x^2 + Cx + A \] ### Step 5: Compare Coefficients We will compare coefficients for \(x^2\), \(x\), and the constant term: 1. Coefficient of \(x^2\): \(1 = A + B\) 2. Coefficient of \(x\): \(2 = C\) 3. Constant term: \(1 = A\) ### Step 6: Solve for A, B, and C From the third equation, we have: \[ A = 1 \] Substituting \(A = 1\) into the first equation: \[ 1 = 1 + B \implies B = 0 \] From the second equation, we have: \[ C = 2 \] ### Step 7: Find \( \cos^{-1} \left( \frac{A}{C} \right) \) Now we need to find \( \cos^{-1} \left( \frac{A}{C} \right) \): \[ \frac{A}{C} = \frac{1}{2} \] ### Step 8: Determine the Angle The angle whose cosine is \( \frac{1}{2} \) is: \[ \theta = \cos^{-1} \left( \frac{1}{2} \right) = \frac{\pi}{3} \] ### Final Answer Thus, the final answer is: \[ \cos^{-1} \left( \frac{A}{C} \right) = \frac{\pi}{3} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If (x)/((1+x^(2))(3-2x))=(A)/(3-2x)+(Bx+C)/(1+x^(2)) then C=

If (x+1)^(2)/(x^(3)+x)=A/x+(Bx+C)/(x^(2)+1) " then "Sin^(-1)(A/C)=

If (3x+2)/((x+1)(2x^(2)+3))=(A)/(x+1)-(Bx+C)/(2x^(2)+3) , then A+B-C=

If (1)/((x-a)(x^(2)+b))=(A)/(x-a)+(Bx+C)/(x^(2)+b) then (1)/((x-a)(x^(2)+b)^(2))=

a : If 1/((x-2)(x^(2)+1))=A/(x-2)+(Bx+C)/(x^(2)+1) " then "A=1/5, B=-1/5, C=-2/5 . R : 1/((x-a)(x^(2)+b))=1/(a^(2)+b)[1/(x-a)-(x+a)/(x^(2)+b)]

If (x^(2)+x+1)/(x^(2)+2x+1)=A+B/(x+1)+C/(x+1)^(2) then A - B =

If 1/(x^(4)+x^(2)+1)=(Ax+B)/(x^(2)+x+1)+(Cx+D)/(x^(2)-x+1) " then "C+D=

If (x^(2)+x+2)/(x^(2)+2x+1)=A+(B)/(x+1)+(C)/((x+1)^(2)) , then find the value of A+B+C .

int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k _(1)) ( sqrt(1-9x ^(2))+ (cos ^(-1) 3x )^(k_(2)))+c, then k _(1) ^(2)+k_(2)^(2)= (where C is an arbitrary constnat. )

If (1)/((1+2x)(1-x^(2)))=(A)/(1+2x)+(B)/(1+x)+(C)/(1-x) then assending order of A, B, C.