Home
Class 12
MATHS
If (x^(2)-10x+13)/((x-1)(x^(2)-5x+6))=(A...

If `(x^(2)-10x+13)/((x-1)(x^(2)-5x+6))=(A)/(x-1)+(B)/(x-2)+(C)/(x-3)` then write the values of A, B, C in ascending order.

A

A, B, C

B

C, B, A

C

C, A, B

D

B, C, A

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{x^2 - 10x + 13}{(x-1)(x^2 - 5x + 6)} = \frac{A}{x-1} + \frac{B}{x-2} + \frac{C}{x-3}, \] we will first factor the denominator on the left-hand side. ### Step 1: Factor the denominator The quadratic \(x^2 - 5x + 6\) can be factored as \((x-2)(x-3)\). Thus, the complete factorization of the denominator is: \[ (x-1)(x-2)(x-3). \] ### Step 2: Rewrite the equation Now we can rewrite the equation as: \[ \frac{x^2 - 10x + 13}{(x-1)(x-2)(x-3)} = \frac{A}{x-1} + \frac{B}{x-2} + \frac{C}{x-3}. \] ### Step 3: Combine the right-hand side To combine the right-hand side, we need a common denominator, which is \((x-1)(x-2)(x-3)\). Thus, we can rewrite it as: \[ \frac{A(x-2)(x-3) + B(x-1)(x-3) + C(x-1)(x-2)}{(x-1)(x-2)(x-3)}. \] ### Step 4: Set the numerators equal Now we equate the numerators: \[ x^2 - 10x + 13 = A(x-2)(x-3) + B(x-1)(x-3) + C(x-1)(x-2). \] ### Step 5: Expand the right-hand side Expanding each term: 1. \(A(x-2)(x-3) = A(x^2 - 5x + 6)\) 2. \(B(x-1)(x-3) = B(x^2 - 4x + 3)\) 3. \(C(x-1)(x-2) = C(x^2 - 3x + 2)\) Combining these gives: \[ (A + B + C)x^2 + (-5A - 4B - 3C)x + (6A + 3B + 2C). \] ### Step 6: Compare coefficients Now we compare coefficients from both sides: 1. For \(x^2\): \(A + B + C = 1\) (Equation 1) 2. For \(x\): \(-5A - 4B - 3C = -10\) (Equation 2) 3. For the constant term: \(6A + 3B + 2C = 13\) (Equation 3) ### Step 7: Solve the system of equations From Equation 1, we can express \(C\): \[ C = 1 - A - B. \] Substituting \(C\) into Equations 2 and 3: **Substituting into Equation 2:** \[ -5A - 4B - 3(1 - A - B) = -10, \] \[ -5A - 4B - 3 + 3A + 3B = -10, \] \[ -2A - B = -7 \quad \Rightarrow \quad 2A + B = 7. \quad \text{(Equation 4)} \] **Substituting into Equation 3:** \[ 6A + 3B + 2(1 - A - B) = 13, \] \[ 6A + 3B + 2 - 2A - 2B = 13, \] \[ 4A + B - 11 = 0 \quad \Rightarrow \quad 4A + B = 11. \quad \text{(Equation 5)} \] ### Step 8: Solve Equations 4 and 5 Now we solve Equations 4 and 5: 1. From Equation 4: \(B = 7 - 2A\). 2. Substitute into Equation 5: \[ 4A + (7 - 2A) = 11, \] \[ 2A + 7 = 11, \] \[ 2A = 4 \quad \Rightarrow \quad A = 2. \] ### Step 9: Find B and C Substituting \(A = 2\) back into Equation 4: \[ 2(2) + B = 7 \quad \Rightarrow \quad 4 + B = 7 \quad \Rightarrow \quad B = 3. \] Now substitute \(A\) and \(B\) into Equation 1 to find \(C\): \[ 2 + 3 + C = 1 \quad \Rightarrow \quad C = 1 - 5 = -4. \] ### Step 10: Final values Thus, we have: - \(A = 2\) - \(B = 3\) - \(C = -4\) ### Step 11: Arrange in ascending order Now we arrange \(A\), \(B\), and \(C\) in ascending order: \[ C < A < B \quad \Rightarrow \quad -4 < 2 < 3. \] So the final answer in ascending order is: \[ C, A, B \quad \Rightarrow \quad -4, 2, 3. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (x^(2)-10x+13)/((x-1)(x^(2)-5x+6))=A/(x-1)+B/(x-2)+C/(x-3) , then C =

If (2x^(2)+5)/((x+1)^(2)(x-3))=(A)/(x+1)+(B)/((x+1)^(2))+(C)/(x-3) then A=

If (2x^(3)+1)/((x-1)(x+1)(x+2))=A+(B)/(x-1)+(C)/(x+1)+(D)/(x+2) , then find the value of A+B+C+D .

If (1)/((1+2x)(1-x^(2)))=(A)/(1+2x)+(B)/(1+x)+(C)/(1-x) then assending order of A, B, C.

If (x^(2)-5x+7)/(x-1)^(3)=A/(x-1)+B/(x-1)^(2)+C/(x-1)^(3) " then " A+B-C=

x^(3)/((2x-1)(x+2)(x-3))=A+B/(2x-1)+C/(x+2)+D/(x-3) rArr A =

If (x^(2)+x+2)/(x^(2)+2x+1)=A+(B)/(x+1)+(C)/((x+1)^(2)) , then find the value of A+B+C .

If |(x+1,x-1),(x-3,x+2)|=|(4,-1),(1,3)| , then write the value of x .

If |(x+1,x-1),(x-3,x+2)|=|(4,-1),(1,3)| , then write the value of x .

If (3x+2)/((x+1)(2x^(2)+3))=(A)/(x+1)-(Bx+C)/(2x^(2)+3) , then A+B-C=