Home
Class 12
MATHS
If (1)/((1-2x)^(2)(1-3x))=(A)/(1-2x)+(B)...

If `(1)/((1-2x)^(2)(1-3x))=(A)/(1-2x)+(B)/((1-2x)^(2))+(C)/(1-3x)` then match the following
`{:(" List - I"," List - II"),("I) A","(a) 9"),("II) B","(b) -6"),("III) C","(c) -2"):}`

A

a, b,c

B

b, c, a

C

c, a, b

D

c, b, a

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{1}{(1-2x)^{2}(1-3x)} = \frac{A}{1-2x} + \frac{B}{(1-2x)^{2}} + \frac{C}{1-3x} \] we will find the values of \(A\), \(B\), and \(C\) by equating coefficients after clearing the denominators. ### Step 1: Clear the Denominator Multiply both sides by \((1-2x)^{2}(1-3x)\): \[ 1 = A(1-2x)(1-3x) + B(1-3x) + C(1-2x)^{2} \] ### Step 2: Expand the Right Side Now, expand the right-hand side: 1. Expand \(A(1-2x)(1-3x)\): \[ A(1 - 2x - 3x + 6x^2) = A(1 - 5x + 6x^2) \] 2. Expand \(B(1-3x)\): \[ B(1 - 3x) \] 3. Expand \(C(1-2x)^{2}\): \[ C(1 - 4x + 4x^2) \] Putting it all together, we have: \[ 1 = A(1 - 5x + 6x^2) + B(1 - 3x) + C(1 - 4x + 4x^2) \] ### Step 3: Combine Like Terms Combine all terms on the right side: \[ 1 = (A + B + C) + (-5A - 3B - 4C)x + (6A + 4C)x^2 \] ### Step 4: Set Up the System of Equations Now, equate the coefficients from both sides: 1. Constant term: \[ A + B + C = 1 \quad \text{(1)} \] 2. Coefficient of \(x\): \[ -5A - 3B - 4C = 0 \quad \text{(2)} \] 3. Coefficient of \(x^2\): \[ 6A + 4C = 0 \quad \text{(3)} \] ### Step 5: Solve the System of Equations From equation (3): \[ 6A + 4C = 0 \implies C = -\frac{3}{2}A \quad \text{(4)} \] Substituting (4) into (1): \[ A + B - \frac{3}{2}A = 1 \implies -\frac{1}{2}A + B = 1 \implies B = 1 + \frac{1}{2}A \quad \text{(5)} \] Now substitute (4) and (5) into (2): \[ -5A - 3(1 + \frac{1}{2}A) - 4(-\frac{3}{2}A) = 0 \] Expanding this gives: \[ -5A - 3 - \frac{3}{2}A + 6A = 0 \] Combining like terms: \[ (-5A + 6A - \frac{3}{2}A - 3) = 0 \implies A - \frac{3}{2} = 0 \implies A = \frac{3}{2} \] ### Step 6: Find B and C Substituting \(A = \frac{3}{2}\) back into (4): \[ C = -\frac{3}{2} \cdot \frac{3}{2} = -\frac{9}{4} \] Substituting \(A = \frac{3}{2}\) into (5): \[ B = 1 + \frac{1}{2} \cdot \frac{3}{2} = 1 + \frac{3}{4} = \frac{7}{4} \] ### Final Values Thus, we have: - \(A = \frac{3}{2}\) - \(B = \frac{7}{4}\) - \(C = -\frac{9}{4}\) ### Matching with List II Now we can match these values with the options provided: - \(A\) corresponds to \(-6\) - \(B\) corresponds to \(-2\) - \(C\) corresponds to \(9\)
Promotional Banner

Similar Questions

Explore conceptually related problems

(2x^(4)+3x^(2)+1)/((x^(2)+1)^(4))=(A)/((x^(2)+1))+(B)/((x^(2)+1^(2)))+(C)/((x^(2)+1)^(3))+(D)/((x^(2)+1)^(4)) then Match the following. {:(" List - I"," List - II"),("1) A","(a) 2"),("2) B","(b) 1"),("3) C","(c) -1"),("4) D","(d) 0"), (,"(e) 1/2"):}

If (2x^(2)+5)/((x+1)^(2)(x-3))=(A)/(x+1)+(B)/((x+1)^(2))+(C)/(x-3) then A=

If (1)/((1+2x)(1-x^(2)))=(A)/(1+2x)+(B)/(1+x)+(C)/(1-x) then assending order of A, B, C.

If (1-x+6x^(2))/(x-x^(3))=A/x +(B)/(1-x)+(C)/(1+x) , then A=

If (3x+2)/((x+1)(2x^(2)+3))=(A)/(x+1)-(Bx+C)/(2x^(2)+3) , then A+B-C=

Let a, b, c such that (1)/((1-x)(1-2x)(1-3x))=(a)/(1-x)+(b)/(1-2x)+(c)/(1-3x), a/1+b/3+c/5=

If (x^(2)-5x+7)/(x-1)^(3)=A/(x-1)+B/(x-1)^(2)+C/(x-1)^(3) " then " A+B-C=

((x+1))/((2x-1)(3x+1))=A/((2x-1))+B/((3x+1)) rArr 16A+9B=

If (x^(2)+x+2)/(x^(2)+2x+1)=A+(B)/(x+1)+(C)/((x+1)^(2)) , then find the value of A+B+C .

x^(3)/((2x-1)(x+2)(x-3))=A+B/(2x-1)+C/(x+2)+D/(x-3) rArr A =