Home
Class 12
MATHS
Observe the following Lists ul("List -...

Observe the following Lists
`ul("List - I")`
A) If `(3x)/((x-a)(x-b))=(2)/(x-a)+(1)/(x-b)` then `a:b` is
B) If `(x+4)/((x^(2)-4)(x+1))=(A)/(x-2)+(B)/(x+2)+(C)/(x+1)`
then `A+B+C` is
C) If `(2x+1)/((x-1)(x^(2)+1))=(A)/(x-1)+(Bx+C)/(x^(2)+1)` then `C=`
`ul("List - II")`
1) Slope of `x` -axis
2) `sin. (3 pi)/(2)`
3) `{:(" "Lt),(x rarr 0):} (Tan x-Sinx)/(x^(3))`
4) Slope of the line `6x+3y-7=0`
The correct match is

A

4 1 3

B

4 1 3

C

4 1 2

D

2 3 1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will analyze each part of the question step by step. ### Part A: Finding the ratio \( a:b \) We start with the equation: \[ \frac{3x}{(x-a)(x-b)} = \frac{2}{x-a} + \frac{1}{x-b} \] 1. **Combine the right-hand side**: \[ \frac{2}{x-a} + \frac{1}{x-b} = \frac{2(x-b) + 1(x-a)}{(x-a)(x-b)} = \frac{2x - 2b + x - a}{(x-a)(x-b)} = \frac{3x - (a + 2b)}{(x-a)(x-b)} \] 2. **Set the numerators equal**: \[ 3x = 3x - (a + 2b) \] This implies: \[ a + 2b = 0 \quad \Rightarrow \quad a = -2b \] 3. **Find the ratio \( a:b \)**: \[ \frac{a}{b} = \frac{-2b}{b} = -2 \quad \Rightarrow \quad a:b = -2:1 \] ### Part B: Finding \( A + B + C \) We have: \[ \frac{x+4}{(x^2-4)(x+1)} = \frac{A}{x-2} + \frac{B}{x+2} + \frac{C}{x+1} \] 1. **Factor the denominator**: \[ x^2 - 4 = (x-2)(x+2) \] Thus, the equation becomes: \[ \frac{x+4}{(x-2)(x+2)(x+1)} = \frac{A}{x-2} + \frac{B}{x+2} + \frac{C}{x+1} \] 2. **Combine the right-hand side**: \[ \frac{A(x+2)(x+1) + B(x-2)(x+1) + C(x-2)(x+2)}{(x-2)(x+2)(x+1)} \] 3. **Set the numerators equal**: \[ x + 4 = A(x^2 + 3x + 2) + B(x^2 - x - 2) + C(x^2 - 4) \] 4. **Equate coefficients**: - Coefficient of \( x^2 \): \( A + B + C = 0 \) - Coefficient of \( x \): \( 3A - B = 1 \) - Constant term: \( 2A - 2B - 4C = 4 \) 5. **Solve the equations**: From \( A + B + C = 0 \), we can express \( C = -A - B \). Substitute \( C \) into the other equations and solve for \( A \), \( B \), and \( C \). 6. **Find \( A + B + C \)**: Since \( A + B + C = 0 \), we conclude: \[ A + B + C = 0 \] ### Part C: Finding \( C \) We have: \[ \frac{2x+1}{(x-1)(x^2+1)} = \frac{A}{x-1} + \frac{Bx+C}{x^2+1} \] 1. **Combine the right-hand side**: \[ \frac{A(x^2+1) + (Bx+C)(x-1)}{(x-1)(x^2+1)} \] 2. **Set the numerators equal**: \[ 2x + 1 = A(x^2 + 1) + (Bx^2 + Cx - Bx - C) \] 3. **Equate coefficients**: - Coefficient of \( x^2 \): \( A + B = 0 \) - Coefficient of \( x \): \( C - B = 2 \) - Constant term: \( A - C = 1 \) 4. **Solve the equations**: From \( A + B = 0 \), we have \( B = -A \). Substitute \( B \) into the other equations and solve for \( A \), \( B \), and \( C \). 5. **Find \( C \)**: After solving, we find \( C = \frac{1}{2} \). ### Final Results - For part A, \( a:b = -2:1 \) - For part B, \( A + B + C = 0 \) - For part C, \( C = \frac{1}{2} \)
Promotional Banner

Similar Questions

Explore conceptually related problems

If (3x+2)/((x+1)(2x^(2)+3))=(A)/(x+1)-(Bx+C)/(2x^(2)+3) , then A+B-C=

If (x)/((1+x^(2))(3-2x))=(A)/(3-2x)+(Bx+C)/(1+x^(2)) then C=

If (2x^(2)+5)/((x+1)^(2)(x-3))=(A)/(x+1)+(B)/((x+1)^(2))+(C)/(x-3) then A=

If (x^(4))/((x-1)(x-2))=x^(2)+3x+7+(A)/(x-2)+(B)/(x-1) then A=

If (1-x+6x^(2))/(x-x^(3))=A/x +(B)/(1-x)+(C)/(1+x) , then A=

If (x^(2)-5x+7)/(x-1)^(3)=A/(x-1)+B/(x-1)^(2)+C/(x-1)^(3) " then " A+B-C=

a : If 1/((x-2)(x^(2)+1))=A/(x-2)+(Bx+C)/(x^(2)+1) " then "A=1/5, B=-1/5, C=-2/5 . R : 1/((x-a)(x^(2)+b))=1/(a^(2)+b)[1/(x-a)-(x+a)/(x^(2)+b)]

If (1)/((x-a)(x^(2)+b))=(A)/(x-a)+(Bx+C)/(x^(2)+b) then (1)/((x-a)(x^(2)+b)^(2))=

If (x^(2)+x+1)/(x^(2)+2x+1)=A+B/(x+1)+C/(x+1)^(2) then A - B =

If (x+1)^(2)/(x^(3)+x)=A/x+(Bx+C)/(x^(2)+1) " then "Sin^(-1)(A/C)=