Home
Class 12
MATHS
If |x|lt1 and y=x-(x^(2))/(2)+(x^(3))/(3...

If `|x|lt1` and `y=x-(x^(2))/(2)+(x^(3))/(3)-(x^(4))/(4)+...`, then x =

A

`y+(y^(2))/(2!)+(y^(3))/(3!)+…oo`

B

`y-(y^(2))/(2)+(y^(3))/(3)-….oo`

C

`y-(y^(2))/(2!)+(y^(3))/(3!)+…oo`

D

`y-(y^(2))/(2!)+(y^(3))/(3!)- ….. oo`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given series for \( y \): \[ y = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \ldots \] This series is an infinite series that can be recognized as the Taylor series expansion for \( \log(1+x) \) when \( |x| < 1 \). Therefore, we can write: \[ y = \log(1+x) \] ### Step 1: Exponentiate both sides To eliminate the logarithm, we exponentiate both sides: \[ e^y = 1 + x \] ### Step 2: Solve for \( x \) Now, we can rearrange this equation to solve for \( x \): \[ x = e^y - 1 \] ### Step 3: Expand \( e^y \) Next, we can use the Taylor series expansion for \( e^y \): \[ e^y = 1 + \frac{y}{1!} + \frac{y^2}{2!} + \frac{y^3}{3!} + \ldots \] ### Step 4: Substitute into the equation for \( x \) Substituting this expansion back into our equation for \( x \): \[ x = \left(1 + \frac{y}{1!} + \frac{y^2}{2!} + \frac{y^3}{3!} + \ldots\right) - 1 \] ### Step 5: Simplify The \( 1 \) cancels out, so we have: \[ x = \frac{y}{1!} + \frac{y^2}{2!} + \frac{y^3}{3!} + \ldots \] This is the series expansion for \( e^y - 1 \), which is valid for \( |x| < 1 \). ### Final Result Thus, we have derived that: \[ x = y + \frac{y^2}{2!} + \frac{y^3}{3!} + \ldots \] This means that \( x \) can be expressed in terms of \( y \) as the sum of the series.
Promotional Banner

Similar Questions

Explore conceptually related problems

if (5x)/(4) + (3x)/(8) gt (39)/(8) " and " (2x-1)/(12)-(x-1)/(3)lt(3x+1)/(4) , then x belongs to the internal

If cot^(-1)(x-(x^(2))/(2)+(x^(3))/(4)-…………..)+tan^(-1)(x^(2)-(x^(4))/(2)+(x^(6))/(4)-……..)=(pi)/(2)" for "0lt |x| lt sqrt2 , then x is equal to

If x lt 0 , lt 0 , x + y +(x)/4=(1)/(2) and (x+y)((x)/y)=-(1)/(2) then :

Simplify: x^3y(x^2-2x)+2x y(x^3-x^4)

If x^(2)y = 2x - y and |x| lt 1 , then (( y + (y^(3))/(3) + (y^(5))/(5) + ….oo))/((x + (x^(3))/(3) + (x^(5))/(5) + ……oo)) =

If the area bounded by y=f(x), x=(1)/(2),x=(sqrt3)/(2) and the X-axis is A sq units where f(x)= x+(2)/(3)x^(3)+(2)/(3).(4)/(5)x^(5)+(2)/(3).(4)/(5).(6)/(7)x^(7) +...oo,|x|lt1, Then the value of [4A] is (where[.] is G.I.F)

If the hyperbola xy=c^(2) intersects the circle x^(2)+y^(2)=a^(2)" is four points "P(x_(1),y_(1)), Q(x_(2),y_(2)), R(x_(3),y_(3)) and S(x_(4),y_(4)) then show that (i) x_(1)+x_(2)+x_(3)+x_(4)=0 (ii) y_(1)+y_(2)+y_(3)+y_(4)=0 (iii) x_(1)x_(2)x_(3)x_(4)=c^(4) (iv) y_(1)y_(2)y_(3)y_(4)=c^(4)

If x+1/x=3, calculate x^2+1/(x^2),\ x^3+1/(x^3) and x^4+1/(x^4)

If sin^(- 1)(x-(x^2)/2+(x^3)/4-.....)+cos^(- 1)(x^2-(x^4)/2+(x^6)/4-.....)=pi/2 for 0 lt |x| lt sqrt2 then x=

Find Lt_(xto1)(2x-1)/(3x^(2)-4x+5)