Home
Class 12
MATHS
-(2)/(3)-(1)/(2)((4)/(9))-(1)/(3)((8)/(2...

`-(2)/(3)-(1)/(2)((4)/(9))-(1)/(3)((8)/(27))-(1)/(4)((16)/(81))-…..oo=`

A

`-log 3

B

`-log_(e )2`

C

`log_(e )2`

D

`log_(e ) 3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the series \[ S = -\frac{2}{3} - \frac{1}{2} \left(\frac{4}{9}\right) - \frac{1}{3} \left(\frac{8}{27}\right) - \frac{1}{4} \left(\frac{16}{81}\right) - \ldots \] we can rewrite the series in a more manageable form. ### Step 1: Identify the pattern in the series The series can be expressed as: \[ S = -\frac{2}{3} - \frac{1}{2} \cdot \left(\frac{2^2}{3^2}\right) - \frac{1}{3} \cdot \left(\frac{2^3}{3^3}\right) - \frac{1}{4} \cdot \left(\frac{2^4}{3^4}\right) - \ldots \] This can be generalized as: \[ S = -\sum_{n=1}^{\infty} \frac{1}{n+1} \left(\frac{2^n}{3^n}\right) \] ### Step 2: Factor out the common term We can factor out \(-\frac{1}{3}\): \[ S = -\frac{1}{3} \sum_{n=1}^{\infty} \frac{2^n}{n \cdot 3^n} \] ### Step 3: Recognize the series as a logarithmic series The series \(\sum_{n=1}^{\infty} \frac{x^n}{n}\) converges to \(-\log(1-x)\) for \(|x| < 1\). In our case, we can relate it to: \[ \sum_{n=1}^{\infty} \frac{(2/3)^n}{n} = -\log(1 - \frac{2}{3}) = -\log(\frac{1}{3}) = \log(3) \] ### Step 4: Substitute back into the series Thus, we have: \[ S = -\frac{1}{3} \cdot \log(3) \] ### Step 5: Final result The final result is: \[ S = -\log(3) \] ### Summary The series converges to \(-\log(3)\).
Promotional Banner

Similar Questions

Explore conceptually related problems

(1)/(3)-(1)/(2).(1)/(9)+(1)/(3).(1)/(27)-(1)/(4).(1)/(81)+….oo=

(2)/(1).(1)/(3)+(3)/(2).(1)/(9)+(4)/(3).(1)/(27)+(5)/(4).(1)/(81)+…oo=

Find 1-(1)/(2)+(1)/(4)-(1)/(8)+(1)/(16)-(1)/(32)+......oo

2.4^((-1)/(4))*8^((1)/(9))*16^((-1)/(16))*32^((1)/(25))*64^((-1)/(36))*……….oo=

cot^(2)x-(1)/(2)cot^(4)x+(1)/(3)cot^(6)x -(1)/(4)cot^(8)x+…oo=

Find (1)/(3)+(1)/(2.3^(2))+(1)/(3.3^(3))+(1)/(4.3^(4))+….oo=?

Solve for x : (81)^((3)/(4))-((1)/(32))^(-(2)/(5))+x((1)/(2))^(-1).2^(0) = 27

{(1/3)^(-3)-(1/2)^(-3)}-:(1/4)^(-3) = (a) (19)/(64) (b) (64)/(19) (c) (27)/(16) (d) (-19)/(64)

Show that the square root of 3^((1)/(2))xx9^((1)/(4))xx27^((1)/(8))xx81^((1)/(16))xx... to infinity is 3. [ Note : When we are asked to find the square root of a number, it is presumed that we have to find the principal square root.] Find the sum of the series (1)/(2)+(2)/(4)+(3)/(8)+(4)/(10)+...oo and substitute in (1).]

Simplify : ((8)/(27))^(-1//3)xx((25)/(4))^(1//2)xx((4)/(9))^(0)+((125)/(64))^(1//3)