Home
Class 12
MATHS
(sqrt(3)-1)+(1)/(2)(sqrt(3)-1)^(2)+(1)/(...

`(sqrt(3)-1)+(1)/(2)(sqrt(3)-1)^(2)+(1)/(3)(sqrt(3)-1)^(3)+….oo`

A

`log(3+sqrt(2))`

B

`log2`

C

0

D

`-log(2-sqrt(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the series \[ S = (\sqrt{3} - 1) + \frac{1}{2}(\sqrt{3} - 1)^2 + \frac{1}{3}(\sqrt{3} - 1)^3 + \ldots \] we can recognize that this series resembles the Taylor series expansion for \(-\log(1-x)\): \[ -\log(1-x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \ldots \] ### Step 1: Identify the variable \(x\) We can set \(x = \sqrt{3} - 1\). Thus, we can rewrite the series \(S\) as: \[ S = -\log(1 - (\sqrt{3} - 1)) \] ### Step 2: Simplify the expression inside the logarithm Now, we simplify \(1 - (\sqrt{3} - 1)\): \[ 1 - (\sqrt{3} - 1) = 1 - \sqrt{3} + 1 = 2 - \sqrt{3} \] ### Step 3: Substitute back into the logarithm Now we can substitute this back into our expression for \(S\): \[ S = -\log(2 - \sqrt{3}) \] ### Step 4: Final expression Thus, the final expression for the series is: \[ S = -\log(2 - \sqrt{3}) \] ### Step 5: Verify the answer To ensure that this is correct, we can check the value of \(2 - \sqrt{3}\) and confirm that it is positive, which it is since \(\sqrt{3} \approx 1.732\) and \(2 - \sqrt{3} \approx 0.268\). ### Conclusion Therefore, the value of the series is: \[ S = -\log(2 - \sqrt{3}) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(sqrt(3)+1+sqrt(3)+1)/(2sqrt(2))

(sqrt(3)-1/(sqrt(3)))^2 is equal to

(1)/(sqrt(3))times(sqrt(2))/(sqrt(3))=

The value of log_((9)/(4))((1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3)))))...oo) is

f(x)=(x-1)|(x-2)(x-3)|dot Then f decreases in (a) (2-1/(sqrt(3)),2) (b) (2,2+1/(sqrt(3))) (c) (2+1/(sqrt(3)),4) (d) (3,oo)

If sqrt(3) = 1.73 find the value of : (2+sqrt(3))/(2-sqrt(3))+(2-sqrt(3))/(2+sqrt(3))+(sqrt(3)-1)/(sqrt(3)+1)-(sqrt(3)+1)/(sqrt(3)-1) .

Angles of a triangle are in 4:1:1 ration. The ratio between its greatest side and perimeter is 3/(2+sqrt(3)) (b) (sqrt(3))/(2+sqrt(3)) (sqrt(3))/(2-sqrt(3)) (d) 1/(2+sqrt(3))

The sum of the series (1)/(sqrt(1)+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+ . . . . .+(1)/(sqrt(n^(2)-1)+sqrt(n^(2))) equals

The incenter of the triangle with vertices (1,sqrt(3)),(0,0), and (2,0) is (a) (1,(sqrt(3))/2) (b) (2/3,1/(sqrt(3))) (c) (2/3,(sqrt(3))/2) (d) (1,1/(sqrt(3)))

The value of ("lim")_(xvec2)(sqrt(1+sqrt(2+x))-sqrt(3))/(x-2)i s (a) 1/(8sqrt(3)) (b) 1/(4sqrt(3)) (c) 0 (d) none of these