Home
Class 12
MATHS
If log(e )k=2[(3)/(5)+(1)/(3)((3)/(5))^(...

If `log_(e )k=2[(3)/(5)+(1)/(3)((3)/(5))^(3)+(1)/(5)((3)/(5))^(5)+….oo]` then k =

A

2

B

3

C

4

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we start with the equation: \[ \log_e k = 2\left[\frac{3}{5} + \frac{1}{3}\left(\frac{3}{5}\right)^3 + \frac{1}{5}\left(\frac{3}{5}\right)^5 + \ldots \right] \] ### Step 1: Identify the series The series inside the brackets can be rewritten as: \[ S = \frac{3}{5} + \frac{1}{3}\left(\frac{3}{5}\right)^3 + \frac{1}{5}\left(\frac{3}{5}\right)^5 + \ldots \] ### Step 2: Recognize the pattern Notice that the series can be expressed in terms of a power series. The general term appears to be: \[ \frac{1}{n} \left(\frac{3}{5}\right)^{2n-1} \quad \text{for } n = 1, 2, 3, \ldots \] ### Step 3: Factor out the common term We can factor out the common term \(2\): \[ S = 2\left[\frac{3}{5} + \frac{1}{3}\left(\frac{3}{5}\right)^3 + \frac{1}{5}\left(\frac{3}{5}\right)^5 + \ldots \right] \] ### Step 4: Rewrite the series The series can be rewritten using the formula for the sum of an infinite geometric series. The series can be expressed as: \[ S = \frac{3/5}{1 - (3/5)^2} \] ### Step 5: Substitute \(x = \frac{3}{5}\) Using the formula for the sum of a geometric series, we substitute \(x = \frac{3}{5}\): \[ S = \frac{\frac{3}{5}}{1 - \frac{9}{25}} = \frac{\frac{3}{5}}{\frac{16}{25}} = \frac{3}{5} \cdot \frac{25}{16} = \frac{15}{16} \] ### Step 6: Substitute back into the logarithm Now, substituting back into our logarithmic equation: \[ \log_e k = 2 \cdot \frac{15}{16} \] ### Step 7: Simplify the logarithm This simplifies to: \[ \log_e k = \frac{30}{16} = \frac{15}{8} \] ### Step 8: Solve for \(k\) To find \(k\), we exponentiate both sides: \[ k = e^{\frac{15}{8}} \] ### Final Answer Thus, the value of \(k\) is: \[ k = e^{\frac{15}{8}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(1)/(4)+(1)/(3)((1)/(4))^(3)+(1)/(5)((1)/(4))^(5)+…..oo=…….

e^(2((1)/(3)+(1)/(3)*(1)/(3^(3))+(1)/(5)*(1)/(3^(5))+….))=

Simplify : ((3)/(5)+(1)/(3))/((2)/(5)+(2)/(5))

Statement-I : (1)/(1.2)+(1)/(2.2^(2))+(1)/(3.2^(3))+….oo=log_(e )1//2 Statement-II : ((1)/(5)+(1)/(7))+(1)/(3)((1)/(5^(3))+(1)/(7^(3)))+(1)/(5)((1)/(5^(5))+(1)/(7^(5)))+….+oo=(1)/(2)log2 Which of the above is true

2 (3)/(5) + 1 (4)/(5) + 3 (2)/(5

cos x +(1)/(3)cos^(3)x+(1)/(5)cos^(5)x+…..oo=

(1)/(2)((1)/(5)+(1)/(7))-(1)/(4)((1)/(5^(2))+(1)/(7^(2)))+(1)/(6)((1)/(5^(3))+(1)/(7^(3)))-….oo=

Prove that log_(e )((1+x)/(1-x))=2(x+(x^(3))/(3)+(x^(5))/(5)+…)

If x=(1)/(5)+(1.3)/(5.10)+(1.3.5)/(5.10.15)+….oo then find 3x^(2)+6x.

-((4)/(5)+(4^(2))/(5^(2).2)+(4^(3))/(5^(3).3)+(4^(4))/(5^(4).4)+……oo)=