Home
Class 12
MATHS
If y=x+(x^(2))/(2)+(x^(3))/(3)+....oo, t...

If `y=x+(x^(2))/(2)+(x^(3))/(3)+....oo`, then x =

A

`e^(-y)`

B

`1+e^(-y)`

C

`1-e^(-y)`

D

1

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

x +(x^2)/(3!)+(x^3)/(5!) + ......oo =

Assertion (A) : If x+(x^(2))/(2)+(x^(3))/(3)+………oo=log((7)/(6)) then x=(1)/(7) Reason (R ) : If |x| lt 1 , then x+(x^(2))/(2)+(x^(3))/(3)+…..oo=log((1)/(1-x))

Cofficient of x^4 in 1+(1+x+x^2)/(1!) +((1+x+x^2)^2)/(2!) +((1+x+x^2)^3)/(3!) + ....oo =

"If "y=x+x^(2)+x^(3)+...oo and |x|lt1, "then prove that "x=(y)/(1+y).

If y= 1+ x + (x^2)/( 2!) + (x^3)/( 3!) + (x^4)/(4!) +…. to oo , show that (dy)/( dx) = y .

If y=1-x+(x^2)/(2!)-(x^3)/(3!)+(x^4)/(4!)dotto\ oo , then write (d^2y)/(dx^2) in terms of y .

If f(x)=(x^(2))/(1.2)-(x^(3))/(2.3)+(x^(4))/(3.4)-(x^(5))/(4.5)+..oo then

The series . (2x)/(x + 3) + ((2x)/(x + 3))^(2) + ((2x)/(x + 3))^(3) + ...oo have a definite sum when

If (2)/(3)=(x-(1)/(y))+(x^(2)-(1)/(y^(2)))+ ... "To" oo and xy =2 then calculate the values of x and y with the condition that x lt 1 .