Home
Class 12
MATHS
cot^(2)x-(1)/(2)cot^(4)x+(1)/(3)cot^(6)x...

`cot^(2)x-(1)/(2)cot^(4)x+(1)/(3)cot^(6)x -(1)/(4)cot^(8)x+…oo=`

A

log tanx

B

2 log tan x

C

2 log cosec x

D

log cosec x

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

The sum of the series cot^(-1)((9)/(2))+cot^(-1)((33)/(4))+cot^(-1)((129)/(8))+…….oo is equal to :

cot^(-1)sqrt(x)

Statement-1: cosec^(-1)(3)/(2)+cos^(-1)(2/3)-2cot^(-1)(1/7)-cot^(-1)7=cot^(-1)7 Statement-2: cos^(-1)x=sin^(-1)((1)/(x)) and for xgt0cot^(-1)x=tan^(-1)((1)/(x))

The value of int((x^(2)+1))/((x^(4)-x^(2)+1)cot^(-1)(x-(1)/(x)))dx will be

Evaluate each of the following: cot^(-1)(cot((19pi)/6)) (ii) cot^(-1){cot(-(8pi)/3)} (iii) cot^(-1){cot((21pi)/4)}

If x > y > z >0, then find the value of cot^(-1)(x y+1)/(x-y)+cot^(-1)(y z+1)/(y-z)+cot^(-1)(z x+1)/(z-x)

2cot^(- 1)5+cot^(- 1)7+2cot^(- 1)8=pi/4

If x > y > z >0, then find the value of cot^(-1)(x y+1)/(x-y)+cot^(-1)(y z+1)/(z y-z)+cot^(-1)(z x+1)/(z-x)

Sum of infinite terms of the series cot^(-1) ( 1^(2) + 3/4) + cot^(-1) ( 2^(2) + 3/4) + cot^(-1) ( 3^(2) + 3/4) + ... is

int (1)/(1-cot x)