Home
Class 12
MATHS
e^(2((1)/(3)+(1)/(3)*(1)/(3^(3))+(1)/(5)...

`e^(2((1)/(3)+(1)/(3)*(1)/(3^(3))+(1)/(5)*(1)/(3^(5))+….))=`

A

2

B

4

C

1

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( e^{2\left(\frac{1}{3} + \frac{1}{3} \cdot \frac{1}{3^3} + \frac{1}{5} \cdot \frac{1}{3^5} + \ldots\right)} \), we first need to analyze the series inside the exponent. ### Step 1: Identify the series The series can be rewritten as: \[ S = \frac{1}{3} + \frac{1}{3} \cdot \frac{1}{3^3} + \frac{1}{5} \cdot \frac{1}{3^5} + \ldots \] We can observe that the terms are of the form: \[ S = \sum_{n=1}^{\infty} \frac{1}{2n+1} \cdot \frac{1}{3^{2n-1}} \] ### Step 2: Recognize the series as a logarithmic function The series resembles the Taylor series expansion for the logarithmic function. Specifically, we can relate it to the series: \[ \ln(1+x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \ldots \] We can rewrite our series in a form that allows us to use this logarithmic identity. ### Step 3: Transform the series Notice that: \[ S = \sum_{n=1}^{\infty} \frac{1}{2n+1} \left(\frac{1}{3}\right)^{2n-1} \] This can be transformed into: \[ S = \frac{1}{2} \ln\left(\frac{1}{1 - \frac{1}{3}}\right) = \frac{1}{2} \ln\left(\frac{3}{2}\right) \] ### Step 4: Substitute back into the exponent Now substituting \( S \) back into the exponent: \[ e^{2S} = e^{2 \cdot \frac{1}{2} \ln\left(\frac{3}{2}\right)} = e^{\ln\left(\frac{3}{2}\right)} \] ### Step 5: Simplify the expression Using the property of exponents and logarithms, we have: \[ e^{\ln\left(\frac{3}{2}\right)} = \frac{3}{2} \] ### Final Result Thus, the final result is: \[ \frac{3}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Statement-I : (1)/(1.2)+(1)/(2.2^(2))+(1)/(3.2^(3))+….oo=log_(e )1//2 Statement-II : ((1)/(5)+(1)/(7))+(1)/(3)((1)/(5^(3))+(1)/(7^(3)))+(1)/(5)((1)/(5^(5))+(1)/(7^(5)))+….+oo=(1)/(2)log2 Which of the above is true

If log_(e )k=2[(3)/(5)+(1)/(3)((3)/(5))^(3)+(1)/(5)((3)/(5))^(5)+….oo] then k =

x=(1)/(3)+(1)/(3.3^(3))+(1)/(5.3^(5))+….. y=(1)/(5)+(1)/(3.5^(3))+(1)/(5.5^(5))+…. z=1+(1)/(3.2^(2))+(1)/(5.2^(4))+(1)/(7.2^(6))+….. Then descending order of x, y, z

The value of (0.16)^("log"_(2.5)((1)/(3) + (1)/(3^(2)) + (1)/(3^(3)) + …."to" oo)) , is

The sum of the series 1+ 2/3+ (1)/(3 ^(2)) + (2 )/(3 ^(3)) + (1)/(3 ^(4)) + (2)/(3 ^(5)) + (1)/(3 ^(6))+ (2)/(3 ^(7))+ …… upto infinite terms is equal to :

The sum of the series 1 + (1)/(3^(2)) + (1 *4)/(1*2) (1)/(3^(4))+( 1 * 4 * 7)/(1 *2*3)(1)/(3^(6)) + ..., is (a) ((3)/(2))^((1)/(3)) (b) ((5)/(4))^((1)/(3)) (c) ((3)/(2))^((1)/(6)) (d) None of these

2[(1)/(2x + 1) + (1)/(3(2x + 1)^(3)) + (1)/(5(2x + 1)^(5)) + (1)/(5(2x + 1)^(5)) + …] is equal to ,

Find the sum of the infinite series (7)/(5)(1+(1)/(10^(2))+(1.3)/(1.2).(1)/(10^(4))+(1.3.5)/(1.2.3).(1)/(10^(6))+....)

Simplify (i) 2^(2/3). 2^(1/3) (ii) (3^(1/5))^4 (iii) (7^(1/5))/(7^(1/3)) (iv) 13^(1/5). 17^(1/5)

The value of log 2+2 (1/5+1/3.(1)/(5^(3))+1/5.(1_)/(5^(5))+..+infty) is