Home
Class 12
MATHS
tantheta+(1)/(3)tan^(3)theta+(1)/(5)tan^...

`tantheta+(1)/(3)tan^(3)theta+(1)/(5)tan^(5)theta+....=`

A

`(1)/(2)log[sin((pi)/(4)+theta)]`

B

`(1)/(2)log[cos((pi)/(4)+theta)]`

C

`(1)/(2)log[tan((pi)/(4)+theta)]`

D

`(1)/(2)log[cot((pi)/(4)+theta)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given series \( \tan \theta + \frac{1}{3} \tan^3 \theta + \frac{1}{5} \tan^5 \theta + \ldots \), we can recognize that this series resembles the expansion of the logarithmic function. ### Step-by-Step Solution: 1. **Identify the Series**: The series can be expressed as: \[ S = \tan \theta + \frac{1}{3} \tan^3 \theta + \frac{1}{5} \tan^5 \theta + \ldots \] 2. **Recall the Logarithmic Series**: We know from logarithmic identities that: \[ \log \left( \frac{1+x}{1-x} \right) = 2x + \frac{x^3}{3} + \frac{x^5}{5} + \ldots \] This is valid for \( |x| < 1 \). 3. **Substitute \( x = \tan \theta \)**: By substituting \( x = \tan \theta \) into the logarithmic series, we have: \[ \log \left( \frac{1+\tan \theta}{1-\tan \theta} \right) = 2 \tan \theta + \frac{\tan^3 \theta}{3} + \frac{\tan^5 \theta}{5} + \ldots \] 4. **Equate the Series**: From our series \( S \), we can equate: \[ S = \tan \theta + \frac{1}{3} \tan^3 \theta + \frac{1}{5} \tan^5 \theta + \ldots = \frac{1}{2} \log \left( \frac{1+\tan \theta}{1-\tan \theta} \right) \] 5. **Use the Identity for \( \tan \frac{\pi}{4} \)**: We know that \( \tan \frac{\pi}{4} = 1 \). Therefore, we can express: \[ \frac{1+\tan \theta}{1-\tan \theta} = \frac{1+\tan \theta}{1-\tan \theta} = \tan \left( \frac{\pi}{4} + \theta \right) \] 6. **Final Expression**: Thus, we can write: \[ S = \frac{1}{2} \log \left( \tan \left( \frac{\pi}{4} + \theta \right) \right) \] ### Conclusion: The final result is: \[ S = \frac{1}{2} \log \left( \tan \left( \frac{\pi}{4} + \theta \right) \right) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (2tan^(2)theta_(1)tan^(2)theta_(2)tan^(2)theta_(3)+tan^(2)theta_(1)tan^(2)theta_(2)+tan^(2)theta_(2)tan^(2)theta_(3)+tan^(2)theta_(3)tan^(2)theta_(1)=1 then which of the following relations hold good ?

Find the sum n terms of seires tan theta+1/2tan(theta/2 )+1/(2^2)tan(theta/(2^2))+1/(2^3)tan(theta/(2^3))+....

If tan theta+tan(60^(@)+theta)+tan(120^(@)+theta)=3, Prove that: (3tantheta-tan^(3)theta)/(1-3tan^(2)theta)=1

If 1/2sin^(-1)[(3sin2theta)/(5+4cos2theta)]=tan^(-1)x ,t h e nx= (a) tan3theta (b) 3tantheta (c) (1/3)tantheta (d) 3cottheta

Prove that (tan^(2)2theta-tan^(2)theta)/(1-tan^(2)2thetatan^(2)theta)=tan 3 theta tan theta .

If theta_1,theta_2,theta_3 are the three values of thetain[0,2pi] for which tantheta=lambda then the value of tan(theta_1)/3tan(theta_2)/3+tan(theta_2)/3tan(theta_3)/3+tan(theta_3)/3tan(theta_1)/3 is equal to

tantheta+tan(pi/3+theta)+tan((2pi)/(3)+theta)=3

If sectheta=(13)/(5) ,then show that (tantheta)/(1+tan^(2)theta)=(sintheta)/(sectheta) .

If sintheta=(3)/(5) ,verify that (tantheta)/(1+tan^(2)theta)=sinthetacostheta .

If tantheta+tan(theta+pi/3)+tan(theta-pi/3)=ktan3theta then k is equal to