Home
Class 12
MATHS
((y-1)-(1)/(2)(y-1)^(2)+(1)/(3)(y-1)^(3)...

`((y-1)-(1)/(2)(y-1)^(2)+(1)/(3)(y-1)^(3)-....oo)/((a-1)-(1)/(2)(a-1)^(2)+(1)/(3)(a-1)^(3)-....oo)=`

A

`log_(y)a`

B

`log_(a)y`

C

`log_(a)(y//a)`

D

`log_(e )(a//y)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given expression \[ \frac{(y-1) - \frac{1}{2}(y-1)^2 + \frac{1}{3}(y-1)^3 - \ldots}{(a-1) - \frac{1}{2}(a-1)^2 + \frac{1}{3}(a-1)^3 - \ldots} \] we can recognize that both the numerator and the denominator can be expressed in terms of logarithms. ### Step 1: Identify the series as a logarithm The series in the numerator resembles the Taylor series expansion for \(\log(1+x)\), which is: \[ \log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \ldots \] In our case, we can set \(x = (y-1)\) for the numerator and \(x = (a-1)\) for the denominator. ### Step 2: Write the logarithmic expressions Thus, we can express the numerator and denominator as: \[ \text{Numerator: } \log(y) \quad \text{(since } y-1 = x \text{)} \] \[ \text{Denominator: } \log(a) \quad \text{(since } a-1 = x \text{)} \] ### Step 3: Substitute back into the expression Now substituting these back into the original expression gives us: \[ \frac{\log(y)}{\log(a)} \] ### Step 4: Apply the change of base formula Using the change of base formula for logarithms, we have: \[ \frac{\log(y)}{\log(a)} = \log_a(y) \] ### Final Result Thus, the final result of the given expression is: \[ \log_a(y) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If S =(y-1-1/2(y-1)^(2)+1/3(y-1))^(3)/(a-1-1/2(a-1)^(2)+1/3(a-1)^(3) …. Then S is equal to

(sqrt(3)-1)+(1)/(2)(sqrt(3)-1)^(2)+(1)/(3)(sqrt(3)-1)^(3)+….oo

(1)/(3)-(1)/(2).(1)/(9)+(1)/(3).(1)/(27)-(1)/(4).(1)/(81)+….oo=

If (1+1/(1!)+(1)/(2!)+......oo) (1-(1)/(1!) +1/(2!) -1/(3!) + ......oo)=

1/(2!)-1/(3!)+1/(4!) .....oo =

(1/(1!) +1/(2!) +1/(3!) + .....oo) (1/(2!) -1/(3!) +1/(4!)-1/(5!) .....oo)

(2)/(1).(1)/(3)+(3)/(2).(1)/(9)+(4)/(3).(1)/(27)+(5)/(4).(1)/(81)+…oo=

If x=(1)/(1^(2))+(1)/(3^(2))+(1)/(5^(2))+.... , y=(1)/(1^(2))+(3)/(2^(2))+(1)/(3^(2))+(3)/(4^(2))+.... and z=(1)/(1^(2))-(1)/(2^(2))+(1)/(3^(2))-(1)/(4^(2))+... then

(1+3/(1!) +9/(2!) +(27)/(3!) + .....oo) (1+9/(1!) +(81)/(2!)+(729)/(3!)+ .....oo) =

1+3/(1!) +5/(2!) + (7)/(3!) + ......oo=