Home
Class 12
MATHS
If y=x+(x^(2))/(2)+(x^(3))/(3)+…….oo the...

If `y=x+(x^(2))/(2)+(x^(3))/(3)+…….oo` then x =

A

`log(1+x)`

B

`-log(1+x)`

C

`(-log(1+x))/(x)`

D

`(log_(e )(1+x))/(x)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Assertion (A) : If x+(x^(2))/(2)+(x^(3))/(3)+………oo=log((7)/(6)) then x=(1)/(7) Reason (R ) : If |x| lt 1 , then x+(x^(2))/(2)+(x^(3))/(3)+…..oo=log((1)/(1-x))

x +(x^2)/(3!)+(x^3)/(5!) + ......oo =

If y= 1+ x + (x^2)/( 2!) + (x^3)/( 3!) + (x^4)/(4!) +…. to oo , show that (dy)/( dx) = y .

If x^(2)y = 2x - y and |x| lt 1 , then (( y + (y^(3))/(3) + (y^(5))/(5) + ….oo))/((x + (x^(3))/(3) + (x^(5))/(5) + ……oo)) =

If y=1-x+(x^2)/(2!)-(x^3)/(3!)+(x^4)/(4!)dotto\ oo , then write (d^2y)/(dx^2) in terms of y .

If f(x)=(x^(2))/(1.2)-(x^(3))/(2.3)+(x^(4))/(3.4)-(x^(5))/(4.5)+..oo then

If x^(2)y=2x-y then y^(2)+(y^(4))/(2)+(y^(6))/(3)+…oo=

The series . (2x)/(x + 3) + ((2x)/(x + 3))^(2) + ((2x)/(x + 3))^(3) + ...oo have a definite sum when

Cofficient of x^4 in 1+(1+x+x^2)/(1!) +((1+x+x^2)^2)/(2!) +((1+x+x^2)^3)/(3!) + ....oo =