Home
Class 12
MATHS
If f(x)=1-x+x^(2)-x^(3)+x^(4)+….oo then ...

If `f(x)=1-x+x^(2)-x^(3)+x^(4)+….oo` then
`int_(0)^(x)f(x)dx=`

A

log x

B

`log(1-x)`

C

`log(1+x)`

D

`log(1+x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( \int_{0}^{x} f(t) \, dt \), where \( f(x) = 1 - x + x^2 - x^3 + x^4 - \ldots \). ### Step 1: Identify the function \( f(x) \) The function \( f(x) \) is an infinite series: \[ f(x) = 1 - x + x^2 - x^3 + x^4 - \ldots \] This series can be recognized as a geometric series with the first term \( a = 1 \) and the common ratio \( r = -x \). ### Step 2: Sum the infinite series The sum of an infinite geometric series can be calculated using the formula: \[ S = \frac{a}{1 - r} \] provided that \( |r| < 1 \). In our case: \[ f(x) = \frac{1}{1 - (-x)} = \frac{1}{1 + x} \quad \text{for } |x| < 1 \] ### Step 3: Set up the integral Now we can set up the integral: \[ \int_{0}^{x} f(t) \, dt = \int_{0}^{x} \frac{1}{1 + t} \, dt \] ### Step 4: Evaluate the integral The integral of \( \frac{1}{1 + t} \) is: \[ \int \frac{1}{1 + t} \, dt = \ln(1 + t) + C \] Thus, we evaluate the definite integral: \[ \int_{0}^{x} \frac{1}{1 + t} \, dt = \left[ \ln(1 + t) \right]_{0}^{x} = \ln(1 + x) - \ln(1 + 0) = \ln(1 + x) - \ln(1) = \ln(1 + x) \] ### Final Answer Therefore, the result of the integral is: \[ \int_{0}^{x} f(t) \, dt = \ln(1 + x) \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Statement I If f (x) = int_(0)^(1) (xf(t)+1) dt, then int_(0)^(3) f (x) dx =12 Statement II f(x)=3x+1

if f(x) is a differential function such that f(x)=int_(0)^(x)(1+2xf(t))dt&f(1)=e , then Q. int_(0)^(1)f(x)dx=

If f(0)=2,f'(x)=f(x),phi(x)=x+f(x)" then "int_(0)^(1)f(x)phi(x)dx is

Let f (x) be a conitnuous function defined on [0,a] such that f(a-x)=f(x)"for all" x in [ 0,a] . If int_(0)^(a//2) f(x) dx=alpha, then int _(0)^(a) f(x) dx is equal to

Let y=f(x)=4x^(3)+2x-6 , then the value of int_(0)^(2)f(x)dx+int_(0)^(30)f^(-1)(y)dy is equal to _________.

Let f(x)=f(a-x) and g(x)+g(a-x)=4 then int_0^af(x)g(x)dx is equal to (A) 2int_0^af(x)dx (B) int_0^af(x)dx (C) 4int_0^af(x)dx (D) 0

Statement-1: int_(0)^(pi//2) (1)/(1+tan^(3)x)dx=(pi)/(4) Statement-2: int_(0)^(a) f(x)dx=int_(0)^(a) f(a+x)dx

Let f(x)=lim_( n to oo)(cosx)/(1+(tan^(-1)x)^(n)) . Then the value of int_(o)^(oo)f(x)dx is equal to

If f(x)={{:(x+3 : x lt 3),(3x^(2)+1:xge3):} , then find int_(2)^(5) f(x) dx .

If f (6-x ) =f (x), for all then 1/5 int _(2)^(3) x [f (x) + f (x+1)]dx is equal to :