Home
Class 12
MATHS
(1)/(2)((1)/(5)+(1)/(7))-(1)/(4)((1)/(5^...

`(1)/(2)((1)/(5)+(1)/(7))-(1)/(4)((1)/(5^(2))+(1)/(7^(2)))+(1)/(6)((1)/(5^(3))+(1)/(7^(3)))-….oo=`

A

`(1)/(2)log_(e )(5//7)`

B

`(1)/(2)log_(e )(48//35)`

C

`log_(e )(47//35)`

D

`log_(e )(35//47)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given series \[ S = \frac{1}{2} \left( \frac{1}{5} + \frac{1}{7} \right) - \frac{1}{4} \left( \frac{1}{5^2} + \frac{1}{7^2} \right) + \frac{1}{6} \left( \frac{1}{5^3} + \frac{1}{7^3} \right) - \ldots \] we can break it down into two separate series, one involving \( \frac{1}{5^n} \) and the other involving \( \frac{1}{7^n} \). ### Step 1: Rewrite the series We can express the series as: \[ S = \frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \left( \frac{1}{5^n} + \frac{1}{7^n} \right) \] ### Step 2: Separate the series This can be separated into two parts: \[ S = \frac{1}{2} \left( \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n \cdot 5^n} + \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n \cdot 7^n} \right) \] ### Step 3: Recognize the series as logarithmic The series \( \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n x^n} \) converges to \( -\ln(1 + \frac{1}{x}) \) for \( |x| > 1 \). Thus, we can rewrite our sums: \[ \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n \cdot 5^n} = -\ln\left(1 + \frac{1}{5}\right) = -\ln\left(\frac{6}{5}\right) \] \[ \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n \cdot 7^n} = -\ln\left(1 + \frac{1}{7}\right) = -\ln\left(\frac{8}{7}\right) \] ### Step 4: Combine the logarithmic results Now substituting back into our expression for \( S \): \[ S = \frac{1}{2} \left( -\ln\left(\frac{6}{5}\right) - \ln\left(\frac{8}{7}\right) \right) \] Using the property of logarithms \( \ln(a) + \ln(b) = \ln(ab) \): \[ S = \frac{1}{2} \left( -\ln\left(\frac{6 \cdot 8}{5 \cdot 7}\right) \right) = -\frac{1}{2} \ln\left(\frac{48}{35}\right) \] ### Step 5: Final simplification This can be rewritten as: \[ S = \frac{1}{2} \ln\left(\frac{35}{48}\right) \] Thus, the final answer is: \[ S = \frac{1}{2} \ln\left(\frac{48}{35}\right) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Statement-I : (1)/(1.2)+(1)/(2.2^(2))+(1)/(3.2^(3))+….oo=log_(e )1//2 Statement-II : ((1)/(5)+(1)/(7))+(1)/(3)((1)/(5^(3))+(1)/(7^(3)))+(1)/(5)((1)/(5^(5))+(1)/(7^(5)))+….+oo=(1)/(2)log2 Which of the above is true

1+(1)/(3.2^(2))+(1)/(5.2^(4))+(1)/(7.2^(6))+....=

2 (5)/(4) - 4 (7)/(6) + 3 (1)/(3)

(1+1/3.(1)/(2^(2))+1/5.(1)/(2^(4))+1/7(1)/2^(6)+…..oo) =

The sum of the series 1 + (1)/(3^(2)) + (1 *4)/(1*2) (1)/(3^(4))+( 1 * 4 * 7)/(1 *2*3)(1)/(3^(6)) + ..., is (a) ((3)/(2))^((1)/(3)) (b) ((5)/(4))^((1)/(3)) (c) ((3)/(2))^((1)/(6)) (d) None of these

If x = (1)/(1.2) + (1)/(3.4) + (1)/(5.6) …….oo, and y = 1 - (1)/(2.3) - (1)/(4.5) - (1)/(6.7)…….oo , then

(1)/(1.2.3)+(1)/(3.4.5)+(1)/(5.6.7)+....

Find the sum of the infinite series (7)/(5)(1+(1)/(10^(2))+(1.3)/(1.2).(1)/(10^(4))+(1.3.5)/(1.2.3).(1)/(10^(6))+....)

For the series S=1+(1)/((1+3))(1+2)^(2)+(1)/((1+3+5))(1+2+3)^(2)+(1)/((1+3+5+7))(1+2+3+4)^(2)+…………….., if the 7^("th") term is K, then (K)/(4) is equal to

Statement -1: (1^(2))/(1.3)+(2^(2))/(3.5)+(3^(2))/(5.7)+ . . . .+(n^(2))/((2n-1)(2n+1))=(n(n+1))/(2(2n+1)) Statement -2: (1)/(1.3)+(1)/(3.5)+(1)/(5.7)+ . . . .+(1)/((2n-1)(2n+1))=(1)/(2n+1)