Home
Class 12
MATHS
If alpha, beta are the roots of x^(2)-px...

If `alpha, beta` are the roots of `x^(2)-px+q=0` then
`(alpha+beta)x-(alpha^(2)+beta^(2))(x^(2))/(2)+(alpha^(3)+beta^(3))(x^(3))/(3)-….oo=`

A

`log(1+px+qx^(2))`

B

`log(1-px+qx^(2))`

C

`log(1+px-qx^(2))`

D

`log(1-px-qx^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the infinite series given by: \[ S = (\alpha + \beta)x - \frac{(\alpha^2 + \beta^2)x^2}{2} + \frac{(\alpha^3 + \beta^3)x^3}{3} - \ldots \] where \(\alpha\) and \(\beta\) are the roots of the quadratic equation \(x^2 - px + q = 0\). ### Step 1: Identify the roots and their relationships From Vieta's formulas, we know: - \(\alpha + \beta = p\) - \(\alpha \beta = q\) ### Step 2: Express \(\alpha^2 + \beta^2\) and \(\alpha^3 + \beta^3\) Using the identities: \[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = p^2 - 2q \] \[ \alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 + \beta^2 - \alpha\beta) = p((p^2 - 2q) - q) = p(p^2 - 3q) \] ### Step 3: Substitute these into the series Now we can rewrite the series \(S\) as: \[ S = px - \frac{(p^2 - 2q)x^2}{2} + \frac{(p^3 - 3pq)x^3}{3} - \ldots \] ### Step 4: Recognize the series as a logarithmic series The series resembles the Taylor series expansion for \(\log(1 - u)\): \[ \log(1 - u) = -\left(u + \frac{u^2}{2} + \frac{u^3}{3} + \ldots\right) \] Thus, we can express \(S\) in terms of logarithms. ### Step 5: Formulate the logarithmic expression We can express \(S\) as: \[ S = \log(1 + px + qx^2) \] ### Conclusion Thus, the final result is: \[ S = \log(1 + px + qx^2) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta are the rootsof 6x^(2)-4sqrt2 x-3=0 , then alpha^(2)beta+alpha beta^(2) is

If alpha , beta are the roots of x^2 +x+1=0 then alpha beta + beta alpha =

If alpha, beta are the roots of x^(2) - x + 3 = 0 , then alpha^(4) +beta^(4) =

If alpha, beta are the roots of x^(2) + 7x + 3 = 0 then (alpha – 1)^(2) + (beta – 1)^(2) =

If alpha, beta are the roots of 3x^(2) + 5x - 7 = 0 then (1)/(3alpha+5)^(2)+ (1)/(3beta+5)^(2)=

If alpha, beta are the roots of x^2 - sqrt(3)x + 1 = 0 then alpha^(21) + beta^(21) is:

If alpha and beta are the roots of the equation x^2-px + q = 0 then the value of (alpha+beta)x -((alpha^2+beta^2)/2)x^2+((alpha^3+beta^3)/3)x^3+... is

If alpha and beta are the roots of the equation x^2-px + q = 0 then the value of (alpha+beta)x -((alpha^2+beta^2)/2)x^2+((alpha^3+beta^3)/3)x^3+... is

If alpha , beta are the roots of the equation x^(2)-px+q=0 , then (alpha^(2))/(beta^(2))+(beta^(2))/(alpha^(2)) is equal to :

If alpha, beta and 1 are the roots of x^3-2x^2-5x+6=0 , then find alpha and beta