Home
Class 12
MATHS
log(4)2-log(8)2+log(16)2-....=...

`log_(4)2-log_(8)2+log_(16)2-....=`

A

`e^(2)`

B

`log_(e )2+1`

C

`log_(e )3-2`

D

`1-log_(e) 2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \log_{4}2 - \log_{8}2 + \log_{16}2 - \ldots \), we can follow these steps: ### Step 1: Rewrite the logarithms in terms of base 2 Using the change of base formula, we can express each logarithm in terms of base 2: \[ \log_{4}2 = \frac{\log_{2}2}{\log_{2}4}, \quad \log_{8}2 = \frac{\log_{2}2}{\log_{2}8}, \quad \log_{16}2 = \frac{\log_{2}2}{\log_{2}16} \] Since \( \log_{2}2 = 1 \), we have: \[ \log_{4}2 = \frac{1}{\log_{2}4}, \quad \log_{8}2 = \frac{1}{\log_{2}8}, \quad \log_{16}2 = \frac{1}{\log_{2}16} \] ### Step 2: Substitute the values of logarithms Now we can substitute the values: \[ \log_{2}4 = 2, \quad \log_{2}8 = 3, \quad \log_{2}16 = 4 \] Thus, we can rewrite the expression: \[ \log_{4}2 = \frac{1}{2}, \quad \log_{8}2 = \frac{1}{3}, \quad \log_{16}2 = \frac{1}{4} \] So the expression becomes: \[ \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \ldots \] ### Step 3: Identify the pattern The series can be expressed as: \[ \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n+1} \] This series starts from \( n=1 \) and alternates signs. ### Step 4: Recognize the series as a logarithmic series This series can be recognized as related to the Taylor series expansion of \( \log(1+x) \). Specifically, we can relate it to: \[ \log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \ldots \] If we set \( x = 1 \), we find: \[ \log(2) = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \ldots \] ### Step 5: Combine the series Thus, we can rewrite our series as: \[ \frac{1}{2} - \left( \frac{1}{3} - \frac{1}{4} + \ldots \right) \] This can be simplified to: \[ \frac{1}{2} - \log(2) \] ### Final Result The final result of the original expression is: \[ \frac{1}{2} - \log(2) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve : 3log_x(4)+ 2log_(4x)4+3log_(16x)4=0

Solve for x: log_(4) log_(3) log_(2) x = 0 .

Prove that : (log_(2)10)(log_(2)80)-(log_(2)5)(log_(2)160)=4 .

Solve log_(6) 9-log_(9) 27 + log_(8)x = log_(64) x - log_(6) 4 ..

Solve log_(6) 9-log_(9) 27 + log_(8)x = log_(64) x - log_(6) 4 ..

Solve the inequality: log_(x)2.log_(2x)2. log_(2)4x gt 1

If sum log_(2)x+log_(4) x + log_(16) x + log_(256) x + …=6, then find the value of x.

The value of (log_(10)2)^(3)+log_(10)8 * log_(10) 5 + (log_(10)5)^(3) is _______.

let y=sqrt(log_2(3)log_2(12)log_2(48)log_2(192)+16)-log_2(12)log_2(48)+10 find y

log_(2)[log_(4)(log_(10)16^(4)+log_(10)25^(8))] simplifies to :