Home
Class 12
MATHS
2.4^((-1)/(4))*8^((1)/(9))*16^((-1)/(16)...

`2.4^((-1)/(4))*8^((1)/(9))*16^((-1)/(16))*32^((1)/(25))*64^((-1)/(36))*……….oo=`

A

`3^(log3)`

B

`3^(log2)`

C

`2^(log2)`

D

`2^(log3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given expression: \[ 2 \cdot 4^{-\frac{1}{4}} \cdot 8^{\frac{1}{9}} \cdot 16^{-\frac{1}{16}} \cdot 32^{\frac{1}{25}} \cdot 64^{-\frac{1}{36}} \cdots \] we will break down each term and simplify it step by step. ### Step 1: Rewrite the terms in powers of 2 We know that: - \( 4 = 2^2 \) - \( 8 = 2^3 \) - \( 16 = 2^4 \) - \( 32 = 2^5 \) - \( 64 = 2^6 \) Thus, we can rewrite the expression as: \[ 2 \cdot (2^2)^{-\frac{1}{4}} \cdot (2^3)^{\frac{1}{9}} \cdot (2^4)^{-\frac{1}{16}} \cdot (2^5)^{\frac{1}{25}} \cdot (2^6)^{-\frac{1}{36}} \cdots \] ### Step 2: Simplify the powers Using the property of exponents \( (a^m)^n = a^{m \cdot n} \), we can simplify each term: \[ = 2 \cdot 2^{-\frac{2}{4}} \cdot 2^{\frac{3}{9}} \cdot 2^{-\frac{4}{16}} \cdot 2^{\frac{5}{25}} \cdot 2^{-\frac{6}{36}} \cdots \] This simplifies to: \[ = 2^{1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \cdots} \] ### Step 3: Identify the series The exponent is a series: \[ 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \cdots \] This series can be recognized as the alternating harmonic series, which converges to \( \log(2) \). ### Step 4: Substitute back into the expression Now we can substitute back into our expression: \[ = 2^{\log(2)} \] ### Step 5: Simplify further Using the property \( a^{\log_a(b)} = b \), we have: \[ = 2^{\log_2(2)} = 2 \] ### Final Answer Thus, the value of the given expression is: \[ \boxed{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Show that 2^((1)/(4))xx4^((1)/(8))xx8^((1)/(16))xx16^((1)/(32))xx.... oo=2.

-2[(1)/(8)+(1)/(64)+(1)/(384)+…..oo]=

-(2)/(3)-(1)/(2)((4)/(9))-(1)/(3)((8)/(27))-(1)/(4)((16)/(81))-…..oo=

(1)/(3)-(1)/(2).(1)/(9)+(1)/(3).(1)/(27)-(1)/(4).(1)/(81)+….oo=

Find 1-(1)/(2)+(1)/(4)-(1)/(8)+(1)/(16)-(1)/(32)+......oo

Prove that : Find the sum of the infinite series 1+(2)/(3).(1)/(2)+(2.5)/(3.6)((1)/(2))^(2)+(2.5.8)/(3.6.9)((1)/(2))^(3)+......oo

Evaluate : ((1)/(4)) ^(-2) - 3 (32)^((2)/(5)) xx ( 7) ^(0) +((9)/(16))^(-(1)/(2))

Show that 9^(1/(4)).9^(1/(8)).9^(1/(16).) . .."to" oo = 3

Evaluate : [(1)/(4)]^(-2)-3(8)^((2)/(3)) xx 4^(0) + [(9)/(16)]^(-(1)/(2))

An ellipse has its centre at (1,-1) and semi major axis =8 and it passes through the point (1,3). The equation of the ellipse is a. ((x+1)^2)/(64)+((y+1)^2)/(16)=1 b. ((x-1)^2)/(64)+((y-1)^2)/(16)=1 c. ((x-1)^2)/(64)+((y+1)^2)/(16)=1 d. ((x+1)^2)/(64)+((y-1)^2)/(16)=1