Home
Class 12
MATHS
(4)/(1.3)-(6)/(2.4)+(12)/(5.7)-(14)/(6.8...

`(4)/(1.3)-(6)/(2.4)+(12)/(5.7)-(14)/(6.8)+….=`

A

`log_(e )((2)/(e ))`

B

`log_(e )((e )/(2))`

C

`log_(e)2`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{4}{1 \cdot 3} - \frac{6}{2 \cdot 4} + \frac{12}{5 \cdot 7} - \frac{14}{6 \cdot 8} + \ldots \] we will first rewrite the numerators in a more manageable form. ### Step 1: Rewrite the Numerators We can express the numerators as follows: - \(4 = 1 + 3\) - \(6 = 2 + 4\) - \(12 = 5 + 7\) - \(14 = 6 + 8\) Thus, we can rewrite the terms: \[ \frac{4}{1 \cdot 3} = \frac{1 + 3}{1 \cdot 3} = \frac{1}{1 \cdot 3} + \frac{3}{1 \cdot 3} \] \[ \frac{6}{2 \cdot 4} = \frac{2 + 4}{2 \cdot 4} = \frac{2}{2 \cdot 4} + \frac{4}{2 \cdot 4} \] \[ \frac{12}{5 \cdot 7} = \frac{5 + 7}{5 \cdot 7} = \frac{5}{5 \cdot 7} + \frac{7}{5 \cdot 7} \] \[ \frac{14}{6 \cdot 8} = \frac{6 + 8}{6 \cdot 8} = \frac{6}{6 \cdot 8} + \frac{8}{6 \cdot 8} \] ### Step 2: Separate the Terms Now, we can separate the terms in the series: \[ \left( \frac{1}{1 \cdot 3} - \frac{2}{2 \cdot 4} + \frac{5}{5 \cdot 7} - \frac{6}{6 \cdot 8} + \ldots \right) + \left( \frac{3}{1 \cdot 3} - \frac{4}{2 \cdot 4} + \frac{7}{5 \cdot 7} - \frac{8}{6 \cdot 8} + \ldots \right) \] ### Step 3: Identify the Pattern The first part of the series can be simplified: \[ \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \ldots \] This resembles the Taylor series expansion for \(\ln(1+x)\) evaluated at \(x=1\): \[ \ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \ldots \] ### Step 4: Evaluate the Series By substituting \(x=1\): \[ \ln(2) = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \ldots \] Thus, the series converges to \(\ln(2)\). ### Final Answer Therefore, the value of the given expression is: \[ \ln(2) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x = (1)/(1.2) + (1)/(3.4) + (1)/(5.6) …….oo, and y = 1 - (1)/(2.3) - (1)/(4.5) - (1)/(6.7)…….oo , then

Find the sum of infinite terms of the series : (3)/(2.4) + (5)/(1.4.6) + (7)/(2.4.6.8)+ (9)/(2.4.6.8.10)+……

(3)/(4.8)+(3.5)/(4.8.12)+(3.5.7)/(4.8.12.16)+….=

2 (5)/(4) - 4 (7)/(6) + 3 (1)/(3)

1/(2.4) +(1.3)/(2.4.6)+(1.3.5)/(2.4.6.8)+.............oo is equal to

Find the mode in each of the following data collection. 8,6,7,6,5,4, (1)/(2), 7 (1)/(2), 6 (1)/(2), 8 (1)/(2), 10,7,5,5(1)/(2), 8,9 7,5,6,8 (1)/(2),6

Which of the following cannot be valid assignment of probability for elementary events or outcomes of samples space S={w_1, w_2, w_3, w_4, w_5, w_6, w_7}: Elementary events w_1 w_2 w_3 w_4 w_5 w_6 w_7 i. 0.1 0.01 0.05 0.03 0.01 0.2 0.6 ii. 1/7 1/7 1/7 1/7 1/7 1/7 1/7 iii. 0.7 0.6 0.5 0.4 0.3 0.2 0.1 iv. 1/(14) 2/(14) 3/(14) 4/(14) 5/(14) 6/(14) (15)/(14)

Show that (5)/(6.12) + (5.8)/(6.12.18) + (5.8.11)/(6.12.18.24) + ….. = (3root(3)(4) -4)/(6)

The greatest of the numbers 2^(1/2), 3^(1/3), 4^(1/4), 5^(1/5), 6^(1/6) and 7^(1/7) is

Simplify : a. [(3^(3))xx3^(4)]-:3^(4) b. 18^(6)-:3^(12) c. [(5^(6))^(9)xx(5^(15))^(5)]-[(5^(13))^(5)xx(5^(4))^(16)] d. (3^(5)xx10^(5)xx25)-:(5^(7)xx6^(5)) e. ((2)/(b))^(18)xxb^(12)xx(3^(4))^(3) f. [(2^(4))^(2)xx2^(12)]-:4^(2) g. 12^(8)-:3^(6) h. [(7^(7))^(8)xx(7^(9))^(5)]-[(7^(11))^(6)xx(7^(7))^(5)] i. (25^(2)xxp^(4)xxq^(8))-:(5^(3)xxp^(4)xxq^(7)) j. ((a)/(3))^(24)xx2^(8)xx(3^(6))^(4)